Article

Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A.

Division of Hematology/Oncology, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.
Science (Impact Factor: 31.48). 01/2009; 322(5909):1839-42. DOI: 10.1126/science.1165409
Source: PubMed

ABSTRACT Differences in the amount of fetal hemoglobin (HbF) that persists into adulthood affect the severity of sickle cell disease and the beta-thalassemia syndromes. Genetic association studies have identified sequence variants in the gene BCL11A that influence HbF levels. Here, we examine BCL11A as a potential regulator of HbF expression. The high-HbF BCL11A genotype is associated with reduced BCL11A expression. Moreover, abundant expression of full-length forms of BCL11A is developmentally restricted to adult erythroid cells. Down-regulation of BCL11A expression in primary adult erythroid cells leads to robust HbF expression. Consistent with a direct role of BCL11A in globin gene regulation, we find that BCL11A occupies several discrete sites in the beta-globin gene cluster. BCL11A emerges as a therapeutic target for reactivation of HbF in beta-hemoglobin disorders.

1 Bookmark
 · 
257 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation is an epigenetic modification that plays an important role during mammalian development. Around birth in humans, the main site of red blood cell production moves from the fetal liver to the bone marrow. DNA methylation changes at the β-globin locus and a switch from fetal to adult hemoglobin production characterize this transition. Understanding this globin switch may improve the treatment of patients with sickle cell disease and β-thalassemia, two of the most common Mendelian diseases in the world. The goal of our study was to describe and compare the genome-wide patterns of DNA methylation in fetal and adult human erythroblasts. We used the Illumina HumanMethylation 450 k BeadChip to measure DNA methylation at 402,819 CpGs in ex vivo-differentiated erythroblasts from 12 fetal liver and 12 bone marrow CD34+ donors. We identified 5,937 differentially methylated CpGs that overlap with erythroid enhancers and binding sites for erythropoiesis-related transcription factors. Combining this information with genome-wide association study results, we show that erythroid enhancers define particularly promising genomic regions to identify new genetic variants associated with fetal hemoglobin (HbF) levels in humans. Many differentially methylated CpGs are located near genes with unanticipated roles in red blood cell differentiation and proliferation. For some of these new candidate genes, we confirm the correlation between DNA methylation and gene expression levels in red blood cell progenitors. We also provide evidence that DNA methylation and genetic variation at the β-globin locus independently control globin gene expression in adult erythroblasts. Our DNA methylome maps confirm the widespread dynamic changes in DNA methylation that occur during human erythropoiesis. These changes tend to happen near erythroid enhancers, further highlighting their importance in erythroid regulation and HbF production. Finally, DNA methylation may act independently of the transcription factor BCL11A to repress fetal hemoglobin production. This provides cues on strategies to more efficiently re-activate HbF production in sickle cell disease and β-thalassemia patients.
    Genome Medicine 12/2015; 7(1):1. DOI:10.1186/s13073-014-0122-2 · 4.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to investigate the therapeutic biological mechanism of Yisui Shengxue Granule (YSSXG), a complex Chinese medicine, on the hemolysis and anemia of erythrocytes from patient with thalassemia disease. Sixteen patients with thalassemia (8 cases of α-thalassemia and 8 cases of β-thalassemia) disease were collected and treated with YSSXG for 3 months. The improvements of blood parameter demonstrated that YSSXG had a positive clinical effect on patients with thalassemia disease. For patients with α-thalassemia disease, RT-PCR showed that YSSXG upregulated the relative mRNA expression level of α-globin to β-globin and downregulated DNMT1, DNMT3a, and DNMT3b mRNA compared with pretreatment. Western blotting showed that YSSXG downregulated the expression of DNMT1 and DNMT3a. For patients with β-thalassemia disease, the relative expression level of (A) γ-globin to α-globin had an increasing trend and the level of BCL11A mRNA expression obviously increased. For all patients, RT-PCR showed that YSSXG upregulated mRNA expression of SPTA1 and SPTB. Activities of SOD and GSH-Px significantly increased and MDA obviously reduced on erythrocyte and blood serum after YSSXG treatment. TEM showed that YSSXG decreased the content of inclusion bodies. Activities of Na(+)K(+)-ATPtase and T-ATPtase of erythrocyte increased significantly after YSSXG treatment. This study provides the basis for mechanisms of YSSXG on thalassemia suffering with hemolysis and anemia of erythrocytes from patient.
    Evidence-based Complementary and Alternative Medicine 01/2014; 2014:213782. DOI:10.1155/2014/213782 · 2.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases.
    Hematology Research and Reviews 01/2015; 6:69-85. DOI:10.2147/JBM.S46256

Full-text (2 Sources)

Download
25 Downloads
Available from
Jul 3, 2014