The Heparin-Binding Activity of Secreted Modular Calcium-Binding Protein 1 (SMOC-1) Modulates Its Cell Adhesion Properties

University of Patras, Greece
PLoS ONE (Impact Factor: 3.23). 02/2013; 8(2):e56839. DOI: 10.1371/journal.pone.0056839
Source: PubMed


Secreted modular calcium-binding proteins 1 and 2 (SMOC-1 and SMOC-1) are extracellular calcium- binding proteins belonging to the BM-40 family of proteins. In this work we have identified a highly basic region in the extracellular calcium-binding (EC) domain of the SMOC-1 similar to other known glycosaminoglycan-binding motifs. Size-exclusion chromatography shows that full length SMOC-1 as well as its C-terminal EC domain alone bind heparin and heparan sulfate, but not the related chondroitin sulfate or dermatan sulfate glycosaminoglycans. Intrinsic tryptophan fluorescence measurements were used to quantify the binding of heparin to full length SMOC-1 and the EC domain alone. The calculated equilibrium dissociation constants were in the lower micromolar range. The binding site consists of two antiparallel alpha helices and mutagenesis experiments have shown that heparin-binding residues in both helices must be replaced in order to abolish heparin binding. Furthermore, we show that the SMOC-1 EC domain, like the SMOC-2 EC domain, supports the adhesion of epithelial HaCaT cells. Heparin-binding impaired mutants failed to support S1EC-mediated cell adhesion and together with the observation that S1EC in complex with soluble heparin attenuated cell adhesion we conclude that a functional and accessible S1EC heparin-binding site mediates adhesion of epithelial cells to SMOC-1.

Download full-text


Available from: Brigita Lenarcic, Oct 10, 2015
27 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The main sites of calcium binding were determined for the low molecular weight heparin drug enoxaparin and the synthetic pentasaccharide Arixtra (fondaparinux). [(1)H,(13)C] HSQC pH titrations were carried out to characterize the acid-base properties of these samples both in the presence and absence of calcium. The differences in the titration curves were used to determine the structural components of enoxaparin and fondaparinux responsible for Ca(2+) binding. In enoxaparin both unsubstituted and 2-O-sulfated iduronic acid residues are important in calcium binding and the presence of the 2-O-sulfo group does not seem to influence the Ca(2+) binding capability of the iduronate ring. In fondaparinux changes in chemical shifts upon Ca(2+) binding were smaller than observed for enoxaparin, and were observed for both the glucuronic acid and 2-O-sulfated iduronic acid residues. In enoxaparin significant perturbations of the chemical shift of the N-sulfoglucosamine anomeric carbon in residues connected to 2-O-sulfated iduronic acid were detected on Ca(2+) binding, however it was not possible to determine whether these changes reflect direct involvement in calcium complexation or result from through space interactions or conformational changes.
    Carbohydrate research 11/2013; 384C:13-19. DOI:10.1016/j.carres.2013.11.007 · 1.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: SMOC2 is a member of the BM-40 (SPARC) family of matricellular proteins, reported to influence signaling in the extracellular compartment. In mice, Smoc2 is expressed in many different tissues and was shown to enhance the response to angiogenic growth factors, mediate cell adhesion, keratinocyte migration, and metastasis. Additionally, SMOC2 is associated with vitiligo and craniofacial and dental defects. The function of Smoc2 during early zebrafish development has not been determined to date. Results: In pregastrula zebrafish embryos, smoc2 is expressed ubiquitously. As development progresses, the expression pattern becomes more anteriorly restricted. At the onset of blood cell circulation, smoc2 morphants presented a mild ventralization of posterior structures. Molecular analysis of the smoc2 morphants indicated myelopoietic defects in the rostral blood islands during segmentation stages. Hemangioblast development and further specification of the myeloid progenitor cells were shown to be impaired. Additional experiments indicated that Bmp target genes were down-regulated in smoc2 morphants. Conclusions: Our findings reveal that Smoc2 is an essential player in the development of myeloid cells of the anterior lateral plate mesoderm during embryonic zebrafish development. Furthermore, our data show that Smoc2 affects the transcription of Bmp target genes without affecting initial dorsoventral patterning or mesoderm development.
    Developmental Dynamics 11/2014; 243(11). DOI:10.1002/dvdy.24164 · 2.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlike mammals, zebrafish have the ability to regenerate damaged parts of their central nervous system (CNS) and regain functionality of the affected area. A better understanding of the molecular mechanisms involved in zebrafish regeneration may therefore provide insight into how CNS repair might be induced in mammals. Although many studies have described differences in gene expression in zebrafish during CNS regeneration, the regulatory mechanisms underpinning the differential expression of these genes have not been examined. We used microarrays to analyse and integrate the mRNA and microRNA (miRNA) expression profiles of zebrafish retina after optic nerve crush to identify potential regulatory mechanisms that underpin central nerve regeneration. Bioinformatic analysis identified 3 miRNAs and 657 mRNAs that were differentially expressed after injury. We then combined inverse correlations between our miRNA expression and mRNA expression, and integrated these findings with target predictions from TargetScan Fish to identify putative miRNA-gene target pairs. We focused on two over-expressed miRNAs (miR-29b and miR-223), and functionally validated seven of their predicted gene targets using RT-qPCR and luciferase assays to confirm miRNA-mRNA binding. Gene ontology analysis placed the miRNA-regulated genes (eva1a, layna, nefmb, ina, si:ch211-51a6.2, smoc1, sb:cb252) in key biological processes that included cell survival/apoptosis, ECM-cytoskeleton signaling, and heparan sulfate proteoglycan binding, Our results suggest a key role for miR-29b and miR-223 in zebrafish regeneration. The identification of miRNA regulation in a zebrafish injury model provides a framework for future studies in which to investigate not only the cellular processes required for CNS regeneration, but also how these mechanisms might be regulated to promote successful repair and return of function in the injured mammalian brain.
    BMC Genomics 12/2015; 16(1):591. DOI:10.1186/s12864-015-1772-1 · 3.99 Impact Factor