UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells

New England Biolabs, Ipswich, MA 01938-2723, USA.
Nucleic Acids Research (Impact Factor: 8.81). 02/2009; 37(2):493-505. DOI: 10.1093/nar/gkn961
Source: PubMed

ABSTRACT UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is a multi-domain protein associated with cellular proliferation and epigenetic regulation. The UHRF1 binds to methylated CpG dinucleotides and recruits transcriptional repressors DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1) through its distinct domains. However, the molecular basis of UHRF1-mediated transcriptional regulation via chromatin modifications is yet to be fully understood. Here we show that UHRF1 binds histone lysine methyltransferase G9a, and both are co-localized in the nucleus in a cell-cycle-dependent manner. Concurrent with the cell-cycle progression, gradual deposition of UHRF1 and G9a was observed, which mirrored H3K9me2 accumulation on chromatin. Murine Uhrf1-null embryonic stem (ES) cells displayed a reduced amount of G9a and H3K9me2 on chromatin. UHRF1 recruited and cooperated with G9a to inhibit the p21 promoter activity, which correlated with the elevated p21 protein level in both human UHRF1 siRNA-transfected HeLa cells and murine Uhrf1-null ES cells. Furthermore, endogenous p21 promoter remained bound to UHRF1, G9a, DNMT1 and HDAC1, and knockdown of UHRF1 impaired the association of all three chromatin modifiers with the promoter. Thus, our results suggest that UHRF1 may serve as a focal point of transcriptional regulation mediated by G9a and other chromatin modification enzymes.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability of a cell to undergo malignant transformation is both associated with and dependent on a concomitant increase in protein synthesis due to increased cell division rates and biosynthetic activities. Protein synthesis, in turn, depends upon the synthesis of ribosomes and thus ultimately on the transcription of ribosomal RNA by RNA polymerase I that occurs in the nucleolus. Enlargement of nucleoli has long been considered a hallmark of the malignant cell, but it is only recently that the rate of synthesis of rRNA in the nucleolus has been recognized as both a critical regulator of cellular proliferation and a potential target for therapeutic intervention. As might be expected, the factors regulating rRNA synthesis are both numerous and complex. It is the objective of this review to highlight recent advances in understanding how rRNA synthesis is perturbed in transformed mammalian cells and to consider the impact of these findings on the development of new approaches to the treatment of malignancies. In-depth analysis of the process of rRNA transcription itself may be found in several recently published reviews (Drygin et al., 2010, Annu Rev Pharmacol Toxicol 50:131–156; Bywater et al., 2013,Cancer Cell 22: 51–65; Hein et al., 2013,Trends Mol Med 19:643–654). J. Cell. Physiol. © 2014 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 10/2014; DOI:10.1002/jcp.24854 · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation has been considered as an important means of early diagnosis of cancer, which cooperates with histone modifications, playing a crucial role in silencing tumor suppressor genes (TSGs). However, how TSGs are regulated by these epigenetic mechanisms in cancer remains unknown. In this study, we first evaluated 7 TSGs methylation in the early diagnosis of endometrial carcinoma (EC), and then explored the epigenetic mechanisms of their transcriptional regulation. The results showed that SOCS3 and 3OST2 were the most frequently methylated genes in EC (88.3% and 78.3%, respectively), and 3OST2 was correlated with younger patients (< 57 years, P = 0.030) and well-differentiated EC (P = 0.026). Unlike 3OST2, SOCS3 methylation occurred even in complex hyperplasia (53.3%) and atypical hyperplasia (54.2%). 5-aza-2'-deoxycytidine (5-Aza-CdR) or trichostatin A (TSA) alone could partially reverse SOCS3 and 3OST2 methylation, and their combination completely reversed the methylation of both genes. In addition, UHRF1 and methylated H3R8 were enriched on both hypermethylated SOCS3 and 3OST2 promoters, but after 5-Aza-CdR or TSA treatment, the UHRF1 and H3R8me2s enrichment was decreased while H3R8me2a enrichment was increased. In conclusion, we demonstrate for the first time that SOCS3 and 3OST2 methylation plays an important role in endometrial carcinogenesis, and could be directly regulated by UHRF1. Moreover, H3R8me2s acts as a repressive mark, while H3R8me2a was correlated with transcriptional activity in EC.
  • [Show abstract] [Hide abstract]
    ABSTRACT: UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis. © 2015. Published by The Company of Biologists Ltd.
    Development 01/2015; 142(3). DOI:10.1242/dev.115980 · 6.27 Impact Factor

Full-text (3 Sources)

Available from
May 17, 2014