Cell-to-cell communication: Current views and future perspectives

Cellular Dynamics and Communication, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway, .
Cell and Tissue Research (Impact Factor: 3.57). 02/2013; 352(1). DOI: 10.1007/s00441-013-1590-1
Source: PubMed
32 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell-to-cell communication is the basis of coordinated cellular activity and thus fundamental for the functioning of biological systems. In a recently published research article by Chaban et al. (Am. J. Transl. Res., 5(1), 69-79), the authors report on interesting new experimental findings supporting a neuro-hormonal independent, non-diffusible cell-to-cell signaling. Our paper aims to (i) discuss some critical notions used by the authors to describe their findings, and (ii) briefly review related experimental work performed so far but not discussed in the original work of Chaban et al. In our opinion, the research on principles of non-chemical and non-contact cell-to-cell communication has the potential to offer new fundamental insights into biological processes. With this paper, we want to encourage future research on this topic by discussing critical issues and giving an overview of the current state of research.
    American Journal of Translational Research 10/2013; 5(6):586-593. · 3.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intercellular communications within the cancer microenvironment coordinate the assembly of various cell types. Exosomes are mediators of intercellular communication in immune signaling, tumor promotion, stress responses, and angiogenesis. The present research aimed to determine whether miRNAs secreted from human bronchial epithelial (HBE) cells transformed by 1.0 μM arsenite are transferred into normal HBE cells and are functionally active in the recipient cells. The results show that miR-21 is involved in exosome-mediated intercellular communication between neoplastic and normal HBE cells. Exosomes derived from transformed HBE cells stimulated proliferation of normal HBE cells, whereas exosomes from miR-21 depleted cells failed to stimulate proliferation. In normal HBE cells, the expression of phosphatase and tensin homolog, a target gene for miR-21, was increased by exosomal miR-21, indicating that exogenous miRNAs, via exosomal transport, function-like endogenous miRNAs. Concordantly, specific reduction of miR-21 content in exosome-producing transformed cells abolished the stimulation of proliferation by exosomes. Collectively, the data indicate that transformed HBE cells release exosomes containing miR-21, stimulating proliferation in neighboring normal HBE cells and supporting the concept that exosomal miRNAs are involved in cell-cell communication during carcinogenesis induced by environmental chemicals.
    Archive für Toxikologie 06/2014; 2(7). DOI:10.1007/s00204-014-1291-x · 5.98 Impact Factor


32 Reads
Available from