An early decrease in Notch activation is required for human TCR-alphabeta lineage differentiation at the expense of TCR-gammadelta T cells.

Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium.
Blood (Impact Factor: 9.78). 01/2009; 113(13):2988-98. DOI: 10.1182/blood-2008-06-164871
Source: PubMed

ABSTRACT Although well characterized in the mouse, the role of Notch signaling in the human T-cell receptor alphabeta (TCR-alphabeta) versus TCR-gammadelta lineage decision is still unclear. Although it is clear in the mouse that TCR-gammadelta development is less Notch dependent compared with TCR-alphabeta differentiation, retroviral overexpression studies in human have suggested an opposing role for Notch during human T-cell development. Using the OP9-coculture system, we demonstrate that changes in Notch activation are differentially required during human T-cell development. High Notch activation promotes the generation of T-lineage precursors and gammadelta T cells but inhibits differentiation toward the alphabeta lineage. Reducing the amount of Notch activation rescues alphabeta-lineage differentiation, also at the single-cell level. Gene expression analysis suggests that this is mediated by differential sensitivities of Notch target genes in response to changes in Notch activation. High Notch activity increases DTX1, NRARP, and RUNX3 expression, genes that are down-regulated during alphabeta-lineage differentiation. Furthermore, increased interleukin-7 levels cannot compensate for the Notch dependent TCR-gammadelta development. Our results reveal stage-dependent molecular changes in Notch signaling that are critical for normal human T-cell development and reveal fundamental molecular differences between mouse and human.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic studies in T-cell acute lymphoblastic leukemia have uncovered a remarkable complexity of oncogenic and loss-of-function mutations. Amongst this plethora of genetic changes, NOTCH1 activating mutations stand out as the most frequently occurring genetic defect, identified in more than 50% of T-cell acute lymphoblastic leukemias, supporting an essential driver role for this gene in T-cell acute lymphoblastic leukemia oncogenesis. In this study, we aimed to establish a comprehensive compendium of the long non-coding RNA transcriptome under control of Notch signaling. For this purpose, we measured the transcriptional response of all protein coding genes and long non-coding RNAs upon pharmacological Notch inhibition in the human T-cell acute lymphoblastic leukemia cell line CUTLL1 using RNA-sequencing. Similar Notch dependent profiles were established for normal human CD34+ thymic T-cell progenitors exposed to Notch signaling activity in vivo. In addition, we generated long non-coding RNA expression profiles (array data) from ex vivo isolated Notch active CD34+ and Notch inactive CD4+CD8+ thymocytes and from a primary cohort of 15 T-cell acute lymphoblastic leukemia patients with known NOTCH1 mutation status. Integration of these expression datasets with publically available Notch1 ChIP-sequencing data resulted in the identification of long non-coding RNAs directly regulated by Notch activity in normal and malignant T-cell context. Given the central role of Notch in T-cell acute lymphoblastic leukemia oncogenesis, these data pave the way towards development of novel therapeutic strategies that target hyperactive Notch1 signaling in human T-cell acute lymphoblastic leukemia.
    Haematologica 10/2014; 99(12). DOI:10.3324/haematol.2014.115683 · 5.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the role for the individual Notch receptors in early hematopoiesis have been thoroughly investigated in mouse, studies in human have been mostly limited to the use of pan-Notch inhibitors. However, such studies in human are important to predict potential side effects of specific Notch receptor blocking reagents because these are currently being considered as therapeutic tools to treat various Notch-dependent diseases. In this study, we studied the individual roles of Notch1 and Notch3 in early human hematopoietic lineage decisions, particularly during T-lineage specification. Although this process in mice is solely dependent on Notch1 activation, we recently reported Notch3 expression in human uncommitted thymocytes, raising the possibility that Notch3 mediates human T-lineage specification. Although expression of a constitutive activated form of Notch3 (ICN3) results in the induction of T-lineage specification in human CD34(+) hematopoietic progenitor cells, similar to ICN1 overexpression, loss-of-function studies using blocking Abs reveal that only Notch1, but not Notch3, is critical in this process. Blocking of Notch1 activation in OP9-DLL4 cocultures resulted in a complete block in T-lineage specification and induced monocytic and plasmacytoid dendritic cell differentiation instead. In fetal thymus organ cultures, impeded Notch1 activation resulted in B and dendritic cell development. In contrast, Notch3 blocking Abs only marginally affected T-lineage specification and hematopoietic differentiation with a slight increase in monocyte development. No induction of B or dendritic cell development was observed. Thus, our results unambiguously reveal a nonredundant role for Notch1 in human T-lineage specification, despite the expression of other Notch receptors.
    The Journal of Immunology 11/2014; 193(12). DOI:10.4049/jimmunol.1400764 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cells acquire their ultimate identities by activating combinations of transcription factors that initiate and sustain expression of the appropriate cell type-specific genes. T cell development depends on the progression of progenitor cells through three major phases, each of which is associated with distinct transcription factor ensembles that control the recruitment of these cells to the thymus, their proliferation, lineage commitment and responsiveness to T cell receptor signals, all before the allocation of cells to particular effector programmes. All three phases are essential for proper T cell development, as are the mechanisms that determine the boundaries between each phase. Cells that fail to shut off one set of regulators before the next gene network phase is activated are predisposed to leukaemic transformation.
    Nature reviews. Immunology 07/2014; 14(8):529-45. DOI:10.1038/nri3702 · 33.84 Impact Factor