Allosteric inhibition of hypoxia inducible factor-2 with small molecules.

1] Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA. [2] Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Nature Chemical Biology (Impact Factor: 12.95). 02/2013; DOI: 10.1038/nchembio.1185
Source: PubMed

ABSTRACT Hypoxia inducible factors (HIFs) are heterodimeric transcription factors induced in many cancers where they frequently promote the expression of protumorigenic pathways. Though transcription factors are typically considered 'undruggable', the PAS-B domain of the HIF-2α subunit contains a large cavity within its hydrophobic core that offers a unique foothold for small-molecule regulation. Here we identify artificial ligands that bind within this pocket and characterize the resulting structural and functional changes caused by binding. Notably, these ligands antagonize HIF-2 heterodimerization and DNA-binding activity in vitro and in cultured cells, reducing HIF-2 target gene expression. Despite the high sequence identity between HIF-2α and HIF-1α, these ligands are highly selective and do not affect HIF-1 function. These chemical tools establish the molecular basis for selective regulation of HIF-2, providing potential therapeutic opportunities to intervene in HIF-2-driven tumors, such as renal cell carcinomas.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The aryl hydrocarbon receptor (AHR) is critically involved in several physiological processes, including cancer progression and multiple immune phenomena. We, and others, have hypothesized that AHR modulators represent an important new class of targeted therapeutics. Here, ligand shape-based virtual modeling techniques were utilized to identify novel AHR ligands based on previously identified chemotypes. Four structurally unique compounds were identified. One lead compound, CB7993113, was further tested for its ability to block three AHR-dependent biological activities: triple negative breast cancer cell invasion or migration in vitro and AHR ligand-induced bone marrow toxicity in vivo. CB7993113 directly bound both murine and human AHR and inhibited PAH- and TCDD-induced reporter activity by 75% and 90% respectively. A novel homology model, comprehensive agonist and inhibitor titration experiments, and AHR localization studies were consistent with competitive antagonism and blockade of nuclear translocation as the primary mechanism of action. CB7993113 (IC50 3.3 x 10(-7) M) effectively reduced invasion of human breast cancer cells in 3D cultures and blocked tumor cell migration in 2D cultures without significantly affecting cell viability or proliferation. Finally, CB7993113 effectively inhibited the bone marrow ablative effects of 7,12-dimethylbenz[a]anthracene in vivo, demonstrating drug absorption and tissue distribution leading to pharmacological efficacy. These experiments suggest that AHR antagonists such as CB7993113 may represent a new class of targeted therapeutics for immunomodulation and/or cancer therapy.
    Molecular pharmacology 08/2014; · 4.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Development of small-molecule inhibitors of protein-protein interactions is a fundamental challenge at the interface of chemistry and cancer biology. Successful methods for design of protein-protein interaction inhibitors include computational and experimental high-throughput and fragment-based screening strategies to locate small-molecule fragments that bind protein surfaces. An alternative rational design approach seeks to mimic the orientation and disposition of critical binding residues at protein interfaces. We describe the design, synthesis, biochemical, and in vivo evaluation of a small-molecule scaffold that captures the topography of α-helices. We designed mimics of a key α-helical domain at the interface of hypoxia-inducible factor 1α and p300 to develop inhibitors of hypoxia-inducible signaling. The hypoxia-inducible factor/p300 interaction regulates the transcription of key genes, whose expression contributes to angiogenesis, metastasis, and altered energy metabolism in cancer. The designed compounds target the desired protein with high affinity and in a predetermined manner, with the optimal ligand providing effective reduction of tumor burden in experimental animal models.
    Proceedings of the National Academy of Sciences 05/2014; 111(21):7531–7536. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rheumatoid arthritis (RA) is a systemic autoimmune disorder that manifests as chronic inflammation and joint tissue destruction. However, the etiology and pathogenesis of RA have not been fully elucidated. Here, we explored the role of the hypoxia-inducible factors (HIFs), HIF-1α (encoded by HIF1A) and HIF-2α (encoded by EPAS1). HIF-2α was markedly up-regulated in the intimal lining of RA synovium, whereas HIF-1α was detected in a few cells in the sublining and deep layer of RA synovium. Overexpression of HIF-2α in joint tissues caused an RA-like phenotype, whereas HIF-1α did not affect joint architecture. Moreover, a HIF-2α deficiency in mice blunted the development of experimental RA. HIF-2α was expressed mainly in fibroblast-like synoviocytes (FLS) of RA synovium and regulated their proliferation, expression of RANKL (receptor activator of nuclear factor-κB ligand) and various catabolic factors, and osteoclastogenic potential. Moreover, HIF-2α-dependent up-regulation of interleukin (IL)-6 in FLS stimulated differentiation of TH17 cells-crucial effectors of RA pathogenesis. Additionally, in the absence of IL-6 (Il6-/- mice), overexpression of HIF-2α in joint tissues did not cause an RA phenotype. Thus, our results collectively suggest that HIF-2α plays a pivotal role in the pathogenesis of RA by regulating FLS functions, independent of HIF-1α.
    PLoS Biology 06/2014; 12(6):e1001881. · 11.77 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014