Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism

Department of Pediatrics and Biostatistics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA.
American Journal of Clinical Nutrition (Impact Factor: 6.92). 01/2009; 89(1):425-30. DOI: 10.3945/ajcn.2008.26615
Source: PubMed

ABSTRACT Metabolic abnormalities and targeted treatment trials have been reported for several neurobehavioral disorders but are relatively understudied in autism.
The objective of this study was to determine whether or not treatment with the metabolic precursors, methylcobalamin and folinic acid, would improve plasma concentrations of transmethylation/transsulfuration metabolites and glutathione redox status in autistic children.
In an open-label trial, 40 autistic children were treated with 75 microg/kg methylcobalamin (2 times/wk) and 400 microg folinic acid (2 times/d) for 3 mo. Metabolites in the transmethylation/transsulfuration pathway were measured before and after treatment and compared with values measured in age-matched control children.
The results indicated that pretreatment metabolite concentrations in autistic children were significantly different from values in the control children. The 3-mo intervention resulted in significant increases in cysteine, cysteinylglycine, and glutathione concentrations (P < 0.001). The oxidized disulfide form of glutathione was decreased and the glutathione redox ratio increased after treatment (P < 0.008). Although mean metabolite concentrations were improved significantly after intervention, they remained below those in unaffected control children.
The significant improvements observed in transmethylation metabolites and glutathione redox status after treatment suggest that targeted nutritional intervention with methylcobalamin and folinic acid may be of clinical benefit in some children who have autism. This trial was registered at ( as NCT00692315.

  • Source
    10/2014; 2:429-444. DOI:10.3390/healthcare2040429
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The diagnosis of autism spectrum disorder (ASD) at the earliest age possible is important for initiating optimally effective intervention. In the United States the average age of diagnosis is 4 years. Identifying metabolic biomarker signatures of ASD from blood samples offers an opportunity for development of diagnostic tests for detection of ASD at an early age.
    PLoS ONE 11/2014; 9(11):e112445. DOI:10.1371/journal.pone.0112445 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Oxidative stress and abnormal DNA methylation have been implicated in the pathophysiology of autism. The metabolic pathology of autism is relatively unexplored although metabolic imbalance is implicated in the pathogenesis of multiple other neurobehavioral disorders. An abnormal accumulation or deficit of specific metabolites in a defined pathway can provide clues into relevant candidate genes and/or environmental exposures. In addition, the identification of precursor-product metabolite imbalance can inform targeted intervention strategies to restore metabolic balance and potentially improve symptoms of autism. We have investigated metabolic pathways essential for cellular methylation and antioxidant capacity and the functional impact of metabolic imbalance on genome-wide DNA hypomethylation and protein/DNA oxidative damage in children with autism. These metabolic pathways regulate the distribution of precursors for DNA synthesis (proliferation), DNA methylation (epigenetic regulation of gene expression) and glutathione synthesis (redox/antioxidant defense capacity). Previously, we reported that the metabolic profile of many children with autism is consistent with reduced methylation capacity and a more oxidized microenvironment. Objectives: To determine whether methylation and antioxidant metabolic profile differs between case children, unaffected siblings, and age-matched control children and to determine whether the metabolic imbalance is accompanied by DNA hypomethylation and protein/DNA oxidative damage. Methods: Subjects included 162 children, ages 3-10, who were participants in the autism IMAGE study (Integrated Metabolic And Genomic Endeavor) at Arkansas Children’s Hospital Research Institute. The IMAGE cohort is comprised of 162 children including of 68 case children, 54 age-matched controls and 40 unaffected siblings. Children with autistic disorder were diagnosed using DSM-IV (299.0), ADOS and/or CARS >30. Fasting plasma samples were analyzed for folate-dependent transmethylation and transsulfuration metabolites and 3-nitrotyrosine (oxidized protein derivative) using HPLC with electrochemical detection. Genome-wide DNA methylation (as %5-methylcytosine) and the oxidized DNA adduct 8-oxo-deoxyguanine were quantified with Dionex HPLC-UV system coupled to an electrospray ionization (ESI) tandem mass spectrometer. Results: In a pair-wise comparison, the overall metabolic profile of the unaffected siblings differed significantly from their autistic siblings but was not different from unrelated control children. In addition, we report new evidence of genome-wide DNA hypomethylation (epigenetic dysregulation) and oxidative protein/DNA damage in children with autism that was not present in their paired siblings or in unaffected control children. Conclusions: These data indicate that the deficit in antioxidant and methylation capacity is autism-specific and is associated with DNA hypomethylation (epigenetic dysregulation) and oxidative damage. Further, these results suggest a plausible mechanism by which environmental stressors might modulate the genetic predisposition to autism. Acknowledgement: This research was supported with funding from the National Institute of Child Health and Development (RO1 HD051873; SJJ) and Department of Defense (AS073218P1; SJJ)
    International Meeting for Autism Research 2011; 05/2011

Full-text (4 Sources)

Available from
May 26, 2014