Chapter Two. Protein Therapeutics Targeted at the TNF Superfamily

Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Medical Research Institute, La Jolla, CA, USA, E-mail: .
Advances in pharmacology (San Diego, Calif.) 12/2013; 66:51-80. DOI: 10.1016/B978-0-12-404717-4.00002-0
Source: PubMed


Protein-based drugs with their unequivocal specificity achieved the long sought milestone of selectively disrupting cytokine pathways to alleviate ongoing inflammation. Tumor necrosis factor (TNF), a member of the superfamily of cytokines involved in regulating immune and inflammatory processes, provides an exemplary model of protein therapeutics. Antibody and receptor-based inhibitors of TNF modify inflammation leading to dramatic improvement in patients with certain autoimmune diseases. Collectively, the structure, specificity and valence of these protein-based drugs provide direct evidence that the essential mechanism of action is antagonism of the ligand-receptor interaction. Accumulating clinical knowledge regarding TNF inhibitors also provide insights into the mechanisms involved in different autoimmune diseases. Experience in the development of an arsenal of biologics directed at TNF has additionally contributed to knowledge toward overcoming the challenges of protein drugs, which include production, delivery, antigenicity and pharmacodynamics. Dramatic clinical outcomes with TNF inhibitors are driving investigation and development of biologics toward other members of the TNF superfamily to selectively alter functional properties of the immune system.

3 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Homotrimeric TNF superfamily ligands signal by inducing trimers of their cognate receptors. As a biologically active heterotrimer, Lymphotoxin(LT)α1β2 is unique in the TNF superfamily. How the three unique potential receptor-binding interfaces in LTα1β2 trigger signaling via LTβ Receptor (LTβR) resulting in lymphoid organogenesis and propagation of inflammatory signals is poorly understood. Here we show that LTα1β2 possesses two binding sites for LTβR with distinct affinities and that dimerization of LTβR by LTα1β2 is necessary and sufficient for signal transduction. The crystal structure of a complex formed by LTα1β2, LTβR, and the fab fragment of an antibody that blocks LTβR activation reveals the lower affinity receptor-binding site. Mutations targeting each potential receptor-binding site in an engineered single-chain variant of LTα1β2 reveal the high-affinity site. NF-κB reporter assays further validate that disruption of receptor interactions at either site is sufficient to prevent signaling via LTβR.
    Proceedings of the National Academy of Sciences 11/2013; 110(49). DOI:10.1073/pnas.1310838110 · 9.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The journey from the discoveries of lymphotoxin (LT) and tumor necrosis factor (TNF) to the present day age of cytokine inhibitors as therapeutics has been an exciting one with many participants and highs and lows; the saga is compared to that in “The Wizard of Oz”. This communication summarizes the contributions of key players in the discovery of the cytokines and their receptors, the changes in nomenclature, and the discovery of the LT family’s crucial role in secondary and tertiary lymphoid organs. The remarkable advances in therapeutics are detailed as are remaining problems. Finally, special tribute is paid to two pioneers in the field who have recently passed away: Byron H. Waksman and Lloyd Old.
    Cytokine & growth factor reviews 04/2014; 25(2). DOI:10.1016/j.cytogfr.2014.02.001 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Numerous published data on the tumor necrosis factor receptor superfamily member 1B (TNFRSF1B) gene polymorphisms are shown to be associated with response or non-response to anti-TNF therapy in autoimmune diseases such as rheumatoid arthritis (RA), psoriasis and Crohn's Disease (CD). The aim of this study is to investigate whether the TNFRSF1B rs1061622 T/G or TNFRSF1A A/G rs767455 polymorphisms can predict the response to anti-TNF-based therapy in patients with autoimmune diseases. We conducted a meta-analysis of studies on the association between TNFRSF1B rs1061622 T/G polymorphism or TNFRSF1A A/G rs767455 polymorphism and non-responsiveness to anti-TNF therapy in autoimmune diseases. A total of 8 studies involving 929 subjects for TNFRSF1B rs1061622 and 564 subjects for TNFRSF1A rs767455 were finally considered. These studies consisted of seven studies on the TNFRSF1B polymorphism and four studies on the TNFRSF1A polymorphism. Meta-analysis showed significant association between the TNFRSF1B rs1061622 allele and non-responders to anti-TNF therapy [T/G odds ratio (OR) 0.72, 95% confidence interval (CI) 0.57–0.93, p = 0.01]. Stratification by disease type indicated an association between the TNFRSF1B rs1061622 allele and non-responders to TNF antagonist in RA (T/G OR 0.69, 95% CI 0.48–0.99, p < 0.05) and psoriasis (T/G OR 0.39, 95% CI 0.23–0.67, p < 0.001), but not in CD (T/G OR 1.14, 95% CI 0.57–0.93, p = 0.57). And there was no association between TNFRSF1A rs767455 genotype and non-responders to the anti-TNF therapy (A/G OR 0.93, 95% CI 0.70–1.23, p = 0.59). This meta-analysis demonstrates that TNFRSF1B T allele carriers show a better response to anti-TNF therapy, and individuals carrying TNFRSF1A A allele have no relationship with the response to anti-TNF therapy for autoimmune diseases. The genotyping of this polymorphism could help to optimize the treatment by identifying patients with a likely poor response to biological drugs.
    International immunopharmacology 06/2015; 28(1). DOI:10.1016/j.intimp.2015.05.049 · 2.47 Impact Factor