O-Glycoside Biomarker of Apolipoprotein C3: Responsiveness to Obesity, Bariatric Surgery, and Therapy with Metformin, to Chronic or Severe Liver Disease and to Mortality in Severe Sepsis and Graft vs Host Disease

Department of Biochemistry, University of Minnesota, Minneapolis, Minnesota, USA.
Journal of Proteome Research (Impact Factor: 5). 02/2009; 8(2):603-12. DOI: 10.1021/pr800751x
Source: PubMed

ABSTRACT The glyco-isoforms of intact apolipoprotein C3 (ApoC3) were used to probe glycomic changes associated with obesity and recovery following bariatric surgery, liver diseases such as chronic hepatitis C (CHC) and alcoholic liver cirrhosis, as well as severe, multiorgan diseases such as sepsis and graft vs host disease (GVHD). ApoC3 glyco-isoform ratios responded to unique stimuli that did not correlate with serum lipids or with other blood components measured in either a control population or a group of extremely obese individuals. However, glyco-isoform ratios correlated with obesity with a 1.8-fold change among subjects eligible for bariatric surgery relative to a nonobese control population. Bariatric surgery resulted in rapid change of isoform distribution to that of nonobese individuals, after which the distribution was stable in each individual. Although multiple simultaneous factors complicated effector attribution, the isoform ratios of very obese individuals were nearly normal for diabetic individuals on metformin therapy. Glyco-isoform ratios were sensitive to liver diseases such as chronic hepatitis C and alcoholic liver cirrhosis. The correlation coefficient with fibrosis was superior to that of current assays of serum enzyme levels. Diseases of pregnancy that can result in liver damage, HELLP syndrome and pre-eclampsia, did not alter ApoC3 glyco-isoform ratios. Early after umbilical cord blood transplantation the isoform ratios changed and returned to normal in long-term survivors. Larger changes were observed in persons who died. GVHD had little effect. Persons with severe sepsis showed altered ratios. Similar cut-points for mortality (3.5-fold difference from controls) were found for UCBT and sepsis. Similar values characterized liver cirrhosis. Overall, while changes of glyco-isoform ratios occurred in many situations, individual stability of isoform distribution was evident and large changes were limited to high-level disease. If ratio changes associated with obesity are found to document a risk factor for long-term outcomes, the information provided by glyco-isoform ratio changes may provide important, novel information for diagnostic, prognostic and therapy response to metabolic conditions.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Liquid chromatography in coupling with high-resolution ESI-LTQ-Orbitrap mass spectrometry was applied for a proteomic study of pediatric pilocytic astrocytoma brain tumor intracystic fluid by an integrated top-down/bottom-up platform. Both of the proteomic strategies resulted complementary and support each other in contributing to a wide characterization of the protein and peptide content of the tumor fluid. Top-down approach allowed to identify several proteins and peptides involved in different biological activities together with the characterization of interesting proteoforms such as fibrinopeptide A and its truncated form, fibrinopeptide B, complement C3f fragments, β-thymosin peptides, ubiquitin, several apolipoproteins belonging to A and C families, apolipoprotein J and D, and cystatin C. Of particular interest resulted the identification of a N-terminal truncated cystatin C proteoform, likely involved in immune response mechanism modulations and the identification of oxidized and glycosylated apolipoproteins including disulfide bridge dimeric forms. The bottom-up approach confirmed some of the experimental data findings together with adding the characterization of high-molecular-mass proteins in the samples. These data could contribute to elucidate the molecular mechanisms involved in onset and progression of the disease and cyst development.
    Journal of Proteome Research 09/2014; 13(11). DOI:10.1021/pr500806k · 5.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to compare the apolipoprotein composition of the three major lipoprotein classes in patients with metabolic syndrome to healthy controls.
    PLoS ONE 08/2014; 9(8):e104833. DOI:10.1371/journal.pone.0104833 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many of the functional proteins and lipids in HDL particles are potentially glycosylated yet very little is known about the glycoconjugates of HDL. In this study, HDL was isolated from plasma by sequential micro-ultracentrifugation, followed by glycoprotein and glycolipid analysis. N-glycans, glycopeptides, and gangliosides were extracted and purified followed by analysis with nano-HPLC-Chip Q-TOF MS and MS/MS. HDL particles were found to be highly sialylated. Most of the N-glycans (~90%) from HDL glycoproteins were sialylated with one or two neuraminic acids (Neu5Ac). The most abundant N-glycan was a biantennary complex type glycan with two sialic acids (Hexose5HexNAc4Neu5Ac2), and was found in multiple glycoproteins using site-specific glycosylation analysis. The observed O-glycans were all sialylated and most contained a core 1 structure with two Neu5Acs, including those that were associated with apolipoprotein CIII (ApoC-III) and fetuin A. GM3 (monosialoganglioside, NeuAc2-3Gal1-4Glc-Cer) and GD3 (disialoganglioside, NeuAc2-8NeuAc2-3Gal1-4Glc-Cer) were the major gangliosides in HDL. A 60% GM3 and 40% GD3 distribution was observed. Both GM3 and GD3 were composed of heterogeneous ceramide lipid tails, including d18:1/16:0 and d18:1/23:0. This report describes for the first time a glycomic approach for analyzing HDL, highlighting that HDL are highly sialylated particles.
    Journal of Proteome Research 01/2014; 13(2). DOI:10.1021/pr4012393 · 5.06 Impact Factor