Classification and regression tree (CART) analyses of genomic signatures reveal sets of tetramers that discriminate temperature optima of archaea and bacteria

Department of Biology, Wheaton College, Norton, MA 02766, USA.
Archaea (Vancouver, B.C.) (Impact Factor: 2.71). 01/2009; 2(3):159-67. DOI: 10.1155/2008/829730
Source: PubMed

ABSTRACT Classification and regression tree (CART) analysis was applied to genome-wide tetranucleotide frequencies (genomic signatures) of 195 archaea and bacteria. Although genomic signatures have typically been used to classify evolutionary divergence, in this study, convergent evolution was the focus. Temperature optima for most of the organisms examined could be distinguished by CART analyses of tetranucleotide frequencies. This suggests that pervasive (nonlinear) qualities of genomes may reflect certain environmental conditions (such as temperature) in which those genomes evolved. The predominant use of GAGA and AGGA as the discriminating tetramers in CART models suggests that purine-loading and codon biases of thermophiles may explain some of the results.

Download full-text


Available from: Mark D. LeBlanc, Jan 06, 2014
54 Reads
  • Source
    • "Karlin et al. [22] reported that the tetranucleotide CTAG is extremely underrepresented and distributed in an anomalous fashion along the genome of the thermophilic microbe M. jannaschi. Applying classification and regression tree (CART) analysis to genome-wide tetranucleotide frequencies of 195 archaea and bacteria, Dyer et al. [35] reported the discriminating tetramers, the frequencies of which could differentiate between three temperature ranges, hyperthermophily, thermophily and mesophily. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Microbes are known for their unique ability to adapt to varying lifestyle and environment, even to the extreme or adverse ones. The genomic architecture of a microbe may bear the signatures not only of its phylogenetic position, but also of the kind of lifestyle to which it is adapted. The present review aims to provide an account of the specific genome signatures observed in microbes acclimatized to distinct lifestyles or ecological niches. Niche-specific signatures identified at different levels of microbial genome organization like base composition, GC-skew, purine-pyrimidine ratio, dinucleotide abundance, codon bias, oligonucleotide composition etc. have been discussed. Among the specific cases highlighted in the review are the phenomena of genome shrinkage in obligatory host-restricted microbes, genome expansion in strictly intra-amoebal pathogens, strand-specific codon usage in intracellular species, acquisition of genome islands in pathogenic or symbiotic organisms, discriminatory genomic traits of marine microbes with distinct trophic strategies, and conspicuous sequence features of certain extremophiles like those adapted to high temperature or high salinity.
    Current Genomics 04/2012; 13(2):153-62. DOI:10.2174/138920212799860698 · 2.34 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A comparative genomics analysis among all forty whole genome sequences available for cyanobacteria (3 thermophiles– Thermosynechococcus elongatus BP-1, Synechococcus sp. JA-2-3B'a (2-13), Synechococcus sp. JA-3-3Ab and 37 mesophiles) was performed to identify genomic and proteomic factors responsible for the behaviour of T. elongatus BP-1, a thermophilic unicellular cyanobacterium with optimum growth temperature [OGT] of 55°C. Majority of genomic and proteomic characteristics for this cyanobacterium indicated contrasting features indicating its mesophilic behaviour while the role of mutational biasness and selection pressure is thought to be responsible for high OGT. Contradictory results were obtained for T. elongatus for synonymous codon usage, CvP-bias and amino acid composition with respect to thermophilic behaviour. Calculated J2 index is lowest among all cyanobacterial genomes. Except for proline and termination codons, T. elongatus showed synonymous codon usage pattern which is expected for mesophiles. Results indicated that among cyanobacterial genomes, majority of genomic and proteomic determinants put T. elongatus very close to mesophiles and the whole genome of this organism represents continuous gain of mesophilic rather than thermophilic behavior.
    Bioinformation 03/2013; 9(6):299-308. DOI:10.6026/97320630009299 · 0.50 Impact Factor
Show more