Article

Three-dimensional hippocampal atrophy maps distinguish two common temporal lobe seizure-onset patterns

Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-7169, USA.
Epilepsia (Impact Factor: 4.58). 12/2008; 50(6):1361-70. DOI: 10.1111/j.1528-1167.2008.01881.x
Source: PubMed

ABSTRACT Current evidence suggests that the mechanisms underlying depth electrode-recorded seizures beginning with hypersynchronous (HYP) onset patterns are functionally distinct from those giving rise to low-voltage fast (LVF) onset seizures. However, both groups have been associated with hippocampal atrophy (HA), indicating a need to clarify the anatomic correlates of each ictal onset type. We used three-dimensional (3D) hippocampal mapping to quantify HA and determine whether each onset group exhibited a unique distribution of atrophy consistent with the functional differences that distinguish the two onset morphologies.
Sixteen nonconsecutive patients with medically refractory epilepsy were assigned to HYP or LVF groups according to ictal onset patterns recorded with intracranial depth electrodes. Using preimplant magnetic resonance imaging (MRI), levels of volumetrically defined HA were determined by comparison with matched controls, and the distribution of local atrophy was mapped onto 3D hippocampal surface models.
HYP and LVF groups exhibited significant and equivalent levels of HA ipsilateral to seizure onset. Patients with LVF onset seizures also showed significant contralateral volume reductions. On ipsilateral contour maps HYP patients exhibited an atrophy pattern consistent with classical hippocampal sclerosis (HS), whereas LVF atrophy was distributed more laterally and diffusely. Contralateral LVF maps also showed regions of subicular atrophy.
The HS-like distribution of atrophy and the restriction of HA to the ipsilateral hippocampus in HYP patients are consistent with focal hippocampal onsets, and suggest a mechanism utilizing intrahippocampal circuitry. In contrast, the bilateral distribution of nonspecific atrophy in the LVF group may reflect mechanisms involving both hippocampal and extrahippocampal networks.

Download full-text

Full-text

Available from: Gil D Hoftman, Jun 20, 2015
0 Followers
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The perirhinal cortex-which is interconnected with several limbic structures and is intimately involved in learning and memory-plays major roles in pathological processes such as the kindling phenomenon of epileptogenesis and the spread of limbic seizures. Both features may be relevant to the pathophysiology of mesial temporal lobe epilepsy that represents the most refractory adult form of epilepsy with up to 30% of patients not achieving adequate seizure control. Compared to other limbic structures such as the hippocampus or the entorhinal cortex, the perirhinal area remains understudied and, in particular, detailed information on its dysfunctional characteristics remains scarce; this lack of information may be due to the fact that the perirhinal cortex is not grossly damaged in mesial temporal lobe epilepsy and in models mimicking this epileptic disorder. However, we have recently identified in pilocarpine-treated epileptic rats the presence of selective losses of interneuron subtypes along with increased synaptic excitability. In this review we: (i) highlight the fundamental electrophysiological properties of perirhinal cortex neurons; (ii) briefly stress the mechanisms underlying epileptiform synchronization in perirhinal cortex networks following epileptogenic pharmacological manipulations; and (iii) focus on the changes in neuronal excitability and cytoarchitecture of the perirhinal cortex occurring in the pilocarpine model of mesial temporal lobe epilepsy. Overall, these data indicate that perirhinal cortex networks are hyperexcitable in an animal model of temporal lobe epilepsy, and that this condition is associated with a selective cellular damage that is characterized by an age-dependent sensitivity of interneurons to precipitating injuries, such as status epilepticus.
    Frontiers in Cellular Neuroscience 08/2013; 7:130. DOI:10.3389/fncel.2013.00130 · 4.18 Impact Factor
  • Source
    Epilepsia 01/2012; 53(1):220-3. DOI:10.1111/j.1528-1167.2011.03366.x · 4.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patient studies have not provided consistent evidence for interictal neuronal hyperexcitability inside the seizure-onset zone (SOZ). We hypothesized that gray matter (GM) loss could have important effects on neuronal firing, and quantifying these effects would reveal significant differences in neuronal firing inside versus outside the SOZ. Magnetic resonance imaging (MRI) and computational unfolding of mesial temporal lobe (MTL) subregions was used to construct anatomic maps to compute GM loss in presurgical patients with medically intractable focal seizures in relation to controls. In patients, these same maps were used to locate the position of microelectrodes that recorded interictal neuronal activity. Single neuron firing and burst rates were evaluated in relation to GM loss and MTL subregions inside and outside the SOZ. MTL GM thickness was reduced inside and outside the SOZ in patients with respect to controls, yet GM loss was associated more strongly with firing and burst rates in several MTL subregions inside the SOZ. Adjusting single neuron firing and burst rates for the effects of GM loss revealed significantly higher firing rates in the subregion consisting of dentate gyrus and CA2 and CA3 (CA23DG), as well as CA1 and entorhinal cortex (EC) inside versus outside the SOZ where normalized MRI GM loss was ≥1.40 mm. Firing rates were higher in subicular cortex inside the SOZ at GM loss ≥1.97 mm, whereas burst rates were higher in CA23DG, CA1, and EC inside than outside the SOZ at similar levels of GM loss. The correlation between GM loss and increased firing and burst rates suggests GM structural alterations in MTL subregions are associated with interictal neuronal hyperexcitability inside the SOZ. Significant differences in firing rates and bursting in areas with GM loss inside compared to outside the SOZ indicate that synaptic reorganization following cell loss could be associated with varying degrees of epileptogenicity in patients with intractable focal seizures.
    Epilepsia 11/2011; 53(1):25-34. DOI:10.1111/j.1528-1167.2011.03333.x · 4.58 Impact Factor