Article

Diabetes increases mortality after myocardial infarction by oxidizing CaMKII.

The Journal of clinical investigation (Impact Factor: 13.77). 03/2013; 123(3):1262-74. DOI: 10.1172/JCI65268
Source: PubMed

ABSTRACT Diabetes increases oxidant stress and doubles the risk of dying after myocardial infarction, but the mechanisms underlying increased mortality are unknown. Mice with streptozotocin-induced diabetes developed profound heart rate slowing and doubled mortality compared with controls after myocardial infarction. Oxidized Ca2+/calmodulin-dependent protein kinase II (ox-CaMKII) was significantly increased in pacemaker tissues from diabetic patients compared with that in nondiabetic patients after myocardial infarction. Streptozotocin-treated mice had increased pacemaker cell ox-CaMKII and apoptosis, which were further enhanced by myocardial infarction. We developed a knockin mouse model of oxidation-resistant CaMKIIδ (MM-VV), the isoform associated with cardiovascular disease. Streptozotocin-treated MM-VV mice and WT mice infused with MitoTEMPO, a mitochondrial targeted antioxidant, expressed significantly less ox-CaMKII, exhibited increased pacemaker cell survival, maintained normal heart rates, and were resistant to diabetes-attributable mortality after myocardial infarction. Our findings suggest that activation of a mitochondrial/ox-CaMKII pathway contributes to increased sudden death in diabetic patients after myocardial infarction.

0 Followers
 · 
336 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The overall redox potential of a cell is primarily determined by oxidizable/reducible chemical pairs, including glutathione-glutathione disulfide, reduced thioredoxin-oxidized thioredoxin, and NAD+ − NADH (and NADP-NADPH). Current methods for evaluating oxidative stress rely on detecting levels of individual byproducts of oxidative damage or by determining the total levels or activity of individual antioxidant enzymes. Oxidation-reduction potential (ORP), on the other hand, is an integrated, comprehensive measure of the balance between total (known and unknown) pro-oxidant and antioxidant components in a biological system. Much emphasis has been placed on the role of oxidative stress in chronic diseases, such as Alzheimer’s disease and atherosclerosis. The role of oxidative stress in acute diseases often seen in the emergency room and intensive care unit is considerable. New tools for the rapid, inexpensive measurement of both redox potential and total redox capacity should aid in introducing a new body of literature on the role of oxidative stress in acute illness and how to screen and monitor for potentially beneficial pharmacologic agents.
    01/2015; 257. DOI:10.1016/j.redox.2015.01.006
  • [Show abstract] [Hide abstract]
    ABSTRACT: Changes in calcium-calmodulin protein kinase II (CaMKII) have been well demonstrated in nervous tissue of diabetic animal models. Skin shares the same ectodermal origin as nervous tissue and it is often affected in diabetic patients. The goal of this study was to analyze expression of CaMKII in rat foot pad 2 weeks and 2 months after induction of diabetes type 1 and 2. Forty-two Sprague-Dawley rats were used. Diabetes mellitus type 1 (DM1) was induced with intraperitoneally (i.p.) injected 55 mg/kg of streptozotocin (STZ) and diabetes mellitus type 2 (DM2) with a combination of high-fat diet (HFD) and i.p. injection of low-dose STZ (35 mg/kg). Two weeks and two months following diabetes induction rats were sacrificed and skin samples from plantar surface of the both hind paws were removed. Immunohistochemistry was performed for detection of total CaMKII (tCaMKII) and its alpha isoform (pCaMKIIα). For detection of intraepidermal nerve fibers polyclonal antiserum against protein gene product 9.5 (PGP 9.5) was used. The results showed that CaMKII was expressed in the skin of both diabetic models. Total CaMKII was uniformly distributed throughout the epidermis and pCaMKIIα was limited to stratum granulosum. The tCaMKII and pCaMKIIα were not expressed in intraepidermal nerve fibers. Two weeks after induction of diabetes in rats there were no significant differences in expression of tCaMKII and pCaMKIIα between DM1 and DM2 compared to respective controls. In the 2-month experiments, significant increase in epidermal expression of tCaMKII and pCaMKIIα was observed in DM1 animals compared to controls, but not in DM2 animals. This study is the first description of cutaneous CaMKII expression pattern in a diabetic model. CaMKII could play a role in transformation of skin layers and contribute to cutaneous diabetic changes. Further research on physiological role of CaMKII in skin and its role in cutaneous diabetic complications should be undertaken in order to elucidate its function in epidermis.
    Journal of Chemical Neuroanatomy 11/2014; 61-62(61-62):140-6. DOI:10.1016/j.jchemneu.2014.09.004 · 2.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is an important constitutive intracellular catalytic process that occurs in basal conditions, as well as during stress in all tissues. It is induced during cellular growth, tissue differentiation and metabolic demands. The regulated expression is cytoprotective while its deregulation leads to varieties of diseases. It plays a vital role in ischemic heart disease, being beneficial and adaptive during ischemia while detrimental and lethal during reperfusion. Reperfusion injury is the consequence of this deregulated autophagy and the motive of its persistence during reperfusion is still obscure. A long standing debate persists as to the dual nature of autophagy and defining its clearer role in cell death as compared to the widely studied process, apoptosis. Despite the progresses in understanding of the process and identification of critical mediators, there is no therapeutic strategy to address its final outcome, the reperfusion injury. This lack of effective therapeutic strategies has even questioned the validity of the process as a single entity. We still continue to witness the devastation with standard cure of reperfusion. In this article, we review the process, highlight reperfusion injury and outline important studies being conducted for the prevention of reperfusion injury and offer cardio-protection.
    International journal of clinical and experimental pathology 01/2014; 7(12):8322-8341. · 1.78 Impact Factor