Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells.

Dept. of Pharmacology (M/C 868) College of Medicine, Univ. of Illinois; 835 South Wolcott Ave., Chicago, IL 60612, USA.
AJP Cell Physiology (Impact Factor: 3.71). 01/2009; 296(3):C403-13. DOI: 10.1152/ajpcell.00470.2008
Source: PubMed

ABSTRACT Caveolin-1 (Cav-1) regulates agonist-induced Ca(2+) entry in endothelial cells; however, how Cav-1 regulates this process is poorly understood. Here, we describe that Cav-1 scaffold domain (NH(2)-terminal residues 82-101; CSD) interacts with transient receptor potential canonical channel 1 (TRPC1) and inositol 1,4,5-trisphosphate receptor 3 (IP(3)R3) to regulate Ca(2+) entry. We have shown previously that the TRPC1 COOH-terminal residues 781-789 bind to CSD. In the present study, we show that the TRPC1 COOH-terminal residues 781-789 truncated (TRPC1-CDelta781-789) mutant expression abolished Ca(2+) store release-induced Ca(2+) influx in human dermal microvascular endothelial cell line (HMEC) and human embryonic kidney (HEK-293) cells. To understand the basis of loss of Ca(2+) influx, we determined TRPC1 binding to IP(3)R3. We observed that the wild-type (WT)-TRPC1 but not TRPC1-CDelta781-789 effectively interacted with IP(3)R3. Similarly, WT-TRPC1 interacted with Cav-1, whereas TRPC1-CDelta781-789 binding to Cav-1 was markedly suppressed. We also assessed the direct binding of Cav-1 with TRPC1 and observed that the WT-Cav-1 but not the Cav-1DeltaCSD effectively interacted with TRPC1. Since the interaction between TRPC1 and Cav-1DeltaCSD was reduced, we measured Ca(2+) store release-induced Ca(2+) influx in Cav-1DeltaCSD-transfected cells. Surprisingly, Cav-1DeltaCSD expression showed a gain-of-function in Ca(2+) entry in HMEC and HEK-293 cells. We observed a similar gain-of-function in Ca(2+) entry when Cav-1DeltaCSD was expressed in lung endothelial cells of Cav-1 knockout mice. Immunoprecipitation results revealed that WT-Cav-1 but not Cav-1DeltaCSD interacted with IP(3)R3. Furthermore, we observed using confocal imaging the colocalization of IP(3)R3 with WT-Cav-1 but not with Cav-1DeltaCSD on Ca(2+) store release in endothelial cells. These findings suggest that CSD interacts with TRPC1 and IP(3)R3 and thereby regulates Ca(2+) store release-induced Ca(2+) entry in endothelial cells.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acidic Ca2+ stores, particularly lysosomes, are newly discovered players in the well-orchestrated arena of Ca2+ signaling and we are at the verge of understanding how lysosomes accumulate Ca2+ and how they release it in response to different chemical, such as NAADP, and physical signals. Additionally, it is now clear that lysosomes play a key role in autophagy, a process that allows cells to recycle components or to eliminate damaged structures to ensure cellular well-being. Moreover, lysosomes are being unraveled as hubs that coordinate both anabolism via insulin signaling and catabolism via AMPK. These acidic vesicles have close contact with the ER and there is a bidirectional movement of information between these two organelles that exquisitely regulates cell survival. Lysosomes also connect with plasma membrane where caveolae are located as specialized regions involved in Ca2+ and insulin signaling. Alterations of all these signaling pathways are at the core of insulin resistance and diabetes.
    Cell Calcium. 01/2014; 56:323-331.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review describes lipid raft ion channel complexes and EGFR in cancer cells•Complexes are composed of Ca2 + -activated K + (KCa), Cl- (ClCa) and Ca2 + channels•The modification of these lipid raft complexes by lipids is presented•This could lead to a novel therapeutic approach in tumor development
    Biochimica et Biophysica Acta (BBA) - Biomembranes. 11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Large-conductance Ca2+- and voltage-gated big K+ (BKCa, MaxiK, or Slo1) channels are expressed in almost every cell of mammalian tissues and participate in a multitude of physiological processes such as vascular tone regulation, neuronal excitability, neurotransmitter release, neurovascular coupling, bladder tone regulation, urinary K+ excretion, and retinal circulation. BKCa channel is a tetramer of the pore-forming α-subunit encoded by a single gene, Slo. The BKCa-α-subunits are associated with the modulatory β-subunits, which contribute to the functional diversity of the channel. BKCa channels sense and regulate membrane voltage and intracellular Ca2+, which then modulates several cell signaling and metabolic pathways. This review focuses on the main physiologic roles of BKCa channels and the pathogenesis of diseases associated with their loss or malfunction. The mechanistic information highlighted in this review is aimed to enhance the understanding of the unique and diverse roles of BKCa channels in various physiological and pathophysiological phenomena.
    Journal of Receptor, Ligand and Channel Research 03/2014;