Engineering Fibronectin-Based Binding Proteins by Yeast Surface Display

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Methods in enzymology (Impact Factor: 2.19). 01/2013; 523:303-26. DOI: 10.1016/B978-0-12-394292-0.00014-X
Source: PubMed

ABSTRACT Yeast surface display (YSD) presents proteins on the surface of yeast through interaction of the agglutinin subunits Aga1p and Aga2p. The human 10th type III fibronectin (Fn3) is a small, 10-kDa protein domain that maintains its native fold without disulfide bonds. A YSD library of Fn3s has been engineered with a loop amino acid composition similar to that of human antibody complementarity-determining region heavy chain loop 3 (CDR-H3) and varying loop lengths, which has been shown to improve binding ability. There are many advantages of using these small, stable domains that maintain binding capabilities similar to that of antibodies. Here, we outline a YSD methodology to isolate Fn3 binders to a diverse set of target antigens.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biotherapeutics are attractive anti-cancer agents due to their high specificity and limited toxicity compared to conventional small molecules. Antibodies are widely used in cancer therapy, either directly or conjugated to a cytotoxic payload. Peptide therapies, though not as prevalent, have been utilized in hormonal therapy and imaging. The limitations associated with unmodified forms of both types of biotherapeutics have led to the design and development of novel structures, which incorporate key features and structures that have improved the molecules' abilities to bind to tumor targets, avoid degradation, and exhibit favorable pharmacokinetics. In this review, we highlight the current status of monoclonal antibodies and peptides, and provide a perspective on the future of biotherapeutics using novel constructs. © 2015, The American College of Clinical Pharmacology.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The review outlines progress and problems in the design of non-natural antibodies for clinical applications over the past 10-15 years. The modular structure of natural antibodies and approaches to its targeted modifications and combination with other structural elements and effector molecules are considered. The review covers modern methods for immunoglobulin engineering and promising strategies for the creation and applications of monoclonal antibodies, their derivatives and analogues, including abzymes and scaffolds, oriented to the use in the diagnosis and targeted therapy of cancer and other socially significant diseases. The bibliography includes 225 references.
    Russian Chemical Reviews 01/2015; 84(1):1-26. DOI:10.1070/RCR4459 · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely utilized in small molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The 3D rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets. © Proteins 2014;. © 2014 Wiley Periodicals, Inc.
    Proteins Structure Function and Bioinformatics 10/2014; 82(10). DOI:10.1002/prot.24611 · 2.92 Impact Factor