Engineering Fibronectin-Based Binding Proteins by Yeast Surface Display

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Methods in enzymology (Impact Factor: 2.09). 02/2013; 523:303-26. DOI: 10.1016/B978-0-12-394292-0.00014-X
Source: PubMed


Yeast surface display (YSD) presents proteins on the surface of yeast through interaction of the agglutinin subunits Aga1p and Aga2p. The human 10th type III fibronectin (Fn3) is a small, 10-kDa protein domain that maintains its native fold without disulfide bonds. A YSD library of Fn3s has been engineered with a loop amino acid composition similar to that of human antibody complementarity-determining region heavy chain loop 3 (CDR-H3) and varying loop lengths, which has been shown to improve binding ability. There are many advantages of using these small, stable domains that maintain binding capabilities similar to that of antibodies. Here, we outline a YSD methodology to isolate Fn3 binders to a diverse set of target antigens.

Download full-text


Available from: Seymour de Picciotto, Oct 20, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of improved methods for early detection and characterization of cancer presents a major clinical challenge. One approach that has shown excellent potential in preclinical and clinical evaluation is molecular imaging with small-scaffold, non-antibody based, engineered proteins. These novel diagnostic agents produce high contrast images due to their fast clearance from the bloodstream and healthy tissues, can be evolved to bind a multitude of cancer biomarkers, and are easily functionalized by site-specific bioconjugation methods. Several small protein scaffolds have been verified for in vivo molecular imaging including affibodies and their two-helix variants, knottins, fibronectins, DARPins, and several natural ligands. Further, the biodistribution of these engineered ligands can be optimized through rational mutation of the conserved regions, careful selection and placement of chelator, and modification of molecular size.
    Current Opinion in Chemical Engineering 11/2013; 2(4). DOI:10.1016/j.coche.2013.08.009
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we present the spatial structure of the wheat antimicrobial peptide (AMP) Tk-AMP-X2 studied using NMR spectroscopy. This peptide is found to adopt a disulfide-stabilized α-helical hairpin fold and therefore belongs to the α-hairpinin family of plant defense peptides. Based on Tk-AMP-X2 structural similarity to cone snail and scorpion potassium channel blockers, a mutant molecule Tk-hefu and was engineered by incorporating the functionally important residues from κ-hefutoxin 1 onto Tk-AMP-X2 scaffold. The designed peptide contained the so-called essential dyad of amino acid residues significant for channel-blocking activity. Electrophysiological studies showed that while the parent peptide Tk-AMP-X2 did not present any activity against potassium channels, Tk-hefu blocked Kv1.3 channels with similar potency (IC50 ≈35 μM) to κ-hefutoxin 1 (IC50 ≈40 μM). We conclude that α-hairpinins are attractive in their simplicity structural templates, which may be used for functional engineering and drug design.
    Journal of Biological Chemistry 03/2014; 289(20). DOI:10.1074/jbc.M113.530477 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely utilized in small molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The 3D rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets. © Proteins 2014;. © 2014 Wiley Periodicals, Inc.
    Proteins Structure Function and Bioinformatics 10/2014; 82(10). DOI:10.1002/prot.24611 · 2.63 Impact Factor
Show more

Similar Publications