Autoreactive Th1 Cells Activate Monocytes To Support Regional Th17 Responses in Inflammatory Arthritis

The Wistar Institute, Philadelphia, PA 19104.
The Journal of Immunology (Impact Factor: 4.92). 02/2013; 190(7). DOI: 10.4049/jimmunol.1203212
Source: PubMed


We have examined mechanisms underlying the formation of pathologic Th17 cells using a transgenic mouse model in which autoreactive CD4(+) T cells recognize influenza virus hemagglutinin (HA) as a ubiquitously expressed self-Ag and induce inflammatory arthritis. The lymph nodes of arthritic mice contain elevated numbers of inflammatory monocytes (iMO) with an enhanced capacity to promote CD4(+) Th17 cell differentiation, and a regional inflammatory response develops in the paw-draining lymph nodes by an IL-17-dependent mechanism. The activation of these Th17-trophic iMO precedes arthritis development and occurs in the context of an autoreactive CD4(+) Th1 cell response. Adoptive transfer of HA-specific CD4(+) T cells into nonarthritic mice expressing HA as a self-Ag similarly led to the formation of Th1 cells and of iMO that could support Th17 cell formation, and, notably, the accumulation of these iMO in the lymph nodes was blocked by IFN-γ neutralization. These studies show that autoreactive CD4(+) Th1 cells directed to a systemically distributed self-Ag can promote the development of a regional Th17 cell inflammatory response by driving the recruitment of Th17-trophic iMO to the lymph nodes.

8 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although therapies targeting distinct cellular pathways (e.g., anticytokine versus anti-B cell therapy) have been found to be an effective strategy for at least some patients with inflammatory arthritis, the mechanisms that determine which pathways promote arthritis development are poorly understood. We have used a transgenic mouse model to examine how variations in the CD4(+) T cell response to a surrogate self-peptide can affect the cellular pathways that are required for arthritis development. CD4(+) T cells that are highly reactive with the self-peptide induce inflammatory arthritis that affects male and female mice equally. Arthritis develops by a B cell-independent mechanism, although it can be suppressed by an anti-TNF treatment, which prevented the accumulation of effector CD4(+) Th17 cells in the joints of treated mice. By contrast, arthritis develops with a significant female bias in the context of a more weakly autoreactive CD4(+) T cell response, and B cells play a prominent role in disease pathogenesis. In this setting of lower CD4(+) T cell autoreactivity, B cells promote the formation of autoreactive CD4(+) effector T cells (including Th17 cells), and IL-17 is required for arthritis development. These studies show that the degree of CD4(+) T cell reactivity for a self-peptide can play a prominent role in determining whether distinct cellular pathways can be targeted to prevent the development of inflammatory arthritis.
    The Journal of Immunology 03/2014; 192(7). DOI:10.4049/jimmunol.1302528 · 4.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BLK, which encodes B lymphoid kinase, was recently identified in genome wide association studies as a susceptibility gene for systemic lupus erythematosus (SLE), and risk alleles mapping to the BLK locus result in reduced gene expression. To determine whether BLK is indeed a bona fide susceptibility gene, we developed an experimental mouse model, namely the Blk+/-.lpr/lpr (Blk+/-.lpr) mouse, in which Blk expression levels are reduced to levels comparable to those in individuals carrying a risk allele. Here, we report that Blk is expressed not only in B cells, but also in IL-17-producing γδ and DN αβ T cells and in plasmacytoid dendritic cells (pDCs). Moreover, we found that solely reducing Blk expression in C57BL/6-lpr/lpr mice enhanced proinflammatory cytokine production and accelerated the onset of lymphoproliferation, proteinuria, and kidney disease. Together, these findings suggest that BLK risk alleles confer susceptibility to SLE through the dysregulation of a proinflammatory cytokine network.
    PLoS ONE 03/2014; 9(3):e92054. DOI:10.1371/journal.pone.0092054 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Foxp3+ regulatory T (Treg) cells are required to prevent the immune system from spontaneously mounting a severe autoaggressive lymphoproliferative disease and can modulate immune responses in a variety of settings, including infections. In this review, we describe studies that use transgenic mice to determine how signals through the T-cell receptor (TCR) contribute to the development, differentiation, and activity of Treg cells in in vivo settings. By varying the amount and quality of the self-peptide recognized by an autoreactive TCR, we have shown that the interplay between autoreactive thymocyte deletion and Treg cell formation leads to a Treg cell repertoire that is biased toward low abundance agonist self-peptides. In an autoimmune disease setting, we have demonstrated that diverse TCR specificities can be required in order for Treg cells to prevent disease in a mouse model of autoimmune inflammatory arthritis. Lastly, we have shown that Treg cells initially selected based on specificity for a self-peptide can be activated by TCR recognition of a viral peptide, and that they can acquire a specialized phenotype and suppress antiviral effector cell activity at the site of infection. These studies provide insights into the pivotal role that TCR specificity plays in the formation and activity of Treg cells.
    Immunological Reviews 05/2014; 259(1). DOI:10.1111/imr.12177 · 10.12 Impact Factor
Show more


8 Reads
Available from