Grb2 controls phosphorylation of FGFR2 by inhibiting receptor kinase and Shp2 phosphatase activity.

Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and Function, University of Texas MD Anderson Cancer Center, Houston, TX 77030.
The Journal of Cell Biology (Impact Factor: 9.69). 02/2013; 200(4):493-504. DOI: 10.1083/jcb.201204106
Source: PubMed

ABSTRACT Constitutive receptor tyrosine kinase phosphorylation requires regulation of kinase and phosphatase activity to prevent aberrant signal transduction. A dynamic mechanism is described here in which the adaptor protein, growth factor receptor-bound protein 2 (Grb2), controls fibroblast growth factor receptor 2 (FGFR2) signaling by regulating receptor kinase and SH2 domain-containing protein tyrosine phosphatase 2 (Shp2) phosphatase activity in the absence of extracellular stimulation. FGFR2 cycles between its kinase-active, partially phosphorylated, nonsignaling state and its Shp2-dephosphorylated state. Concurrently, Shp2 cycles between its FGFR2-phosphorylated and dephosphorylated forms. Both reciprocal activities of FGFR2 and Shp2 were inhibited by binding of Grb2 to the receptor. Phosphorylation of Grb2 by FGFR2 abrogated its binding to the receptor, resulting in up-regulation of both FGFR2's kinase and Shp2's phosphatase activity. Dephosphorylation of Grb2 by Shp2 rescued the FGFR2-Grb2 complex. This cycling of enzymatic activity results in a homeostatic, signaling-incompetent state. Growth factor binding perturbs this background cycling, promoting increased FGFR2 phosphorylation and kinase activity, Grb2 dissociation, and downstream signaling. Grb2 therefore exerts constitutive control over the mutually dependent activities of FGFR2 and Shp2.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2015 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc.
    03/2015; DOI:10.1002/wdev.176
  • [Show abstract] [Hide abstract]
    ABSTRACT: The RET proto-oncogene, a tyrosine kinase receptor, is widely known for its essential role in cell survival. Germ line missense mutations, which give rise to constitutively active oncogenic RET, were found to cause multiple endocrine neoplasia type 2, a dominant inherited cancer syndrome that affects neuroendocrine organs. However, the mechanisms by which RET promotes cell survival and prevents cell death remain elusive. We demonstrate that in addition to cytoplasmic localization, RET is localized in the nucleus and functions as a tyrosine-threonine dual-specificity kinase. Knockdown of RET by shRNA in medullary thyroid cancer derived cells stimulated expression of Activating Transcription Factor 4 (ATF4), a master transcription factor for stress induced apoptosis through activation of its target proapoptotic genes NOXA and PUMA. RET knockdown also increased sensitivity to cisplatin-induced apoptosis. We observed that RET physically interacted with and phosphorylated ATF4 at tyrosine and threonine residues. Indeed, RET kinase activity was required to inhibit the ATF4 dependent activation of the NOXA gene because the site-specific substitution mutations that block threonine phosphorylation increased ATF4 stability and activated its targets NOXA and PUMA. Moreover, chromatin immunoprecipitation assays revealed that ATF4 occupancy increased at the NOXA promoter in TT cells treated with tyrosine kinase inhibitors or the ATF4 inducer eeyarestatin as well as in RET-depleted TT cells. Together these findings reveal RET as a novel dual kinase with nuclear localization, and provide mechanisms by which RET represses the proapoptotic genes through direct interaction with and phosphorylation-dependent inactivation of ATF4 during the pathogenesis of medullary thyroid cancer. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 03/2015; 290(18). DOI:10.1074/jbc.M114.619833 · 4.60 Impact Factor
  • 03/2015; 27. DOI:10.1016/j.medpho.2014.12.001