Article

White Matter Hyperintensities and Cerebral Amyloidosis: Necessary and Sufficient for Clinical Expression of Alzheimer Disease?

JAMA Neurology (Impact Factor: 7.01). 02/2013; 70(4):1-7. DOI: 10.1001/jamaneurol.2013.1321
Source: PubMed

ABSTRACT IMPORTANCE Current hypothetical models emphasize the importance of β-amyloid in Alzheimer disease (AD) pathogenesis, although amyloid alone is not sufficient to account for the dementia syndrome. The impact of small-vessel cerebrovascular disease, visualized as white matter hyperintensities (WMHs) on magnetic resonance imaging scans, may be a key factor that contributes independently to AD presentation. OBJECTIVE To determine the impact of WMHs and Pittsburgh Compound B (PIB) positron-emission tomography-derived amyloid positivity on the clinical expression of AD. DESIGN Baseline PIB-positron-emission tomography values were downloaded from the Alzheimer's Disease Neuroimaging Initiative database. Total WMH volume was derived on accompanying structural magnetic resonance imaging data. We examined whether PIB positivity and total WMHs predicted diagnostic classification of patients with AD (n = 20) and control subjects (n = 21). A second analysis determined whether WMHs discriminated between those with and without the clinical diagnosis of AD among those who were classified as PIB positive (n = 28). A third analysis examined whether WMHs, in addition to PIB status, could be used to predict future risk for AD among subjects with mild cognitive impairment (n = 59). SETTING The Alzheimer's Disease Neuroimaging Initiative public database. PARTICIPANTS The study involved data from 21 normal control subjects, 59 subjects with mild cognitive impairment, and 20 participants with clinically defined AD from the Alzheimer Disease's Neuroimaging Initiative database. MAIN OUTCOME MEASURES Clinical AD diagnosis and WMH volume. RESULTS Pittsburgh Compound B positivity and increased total WMH volume independently predicted AD diagnosis. Among PIB-positive subjects, those diagnosed as having AD had greater WMH volume than normal control subjects. Among subjects with mild cognitive impairment, both WMH and PIB status at baseline conferred risk for future diagnosis of AD. CONCLUSIONS AND RELEVANCE White matter hyperintensities contribute to the presentation of AD and, in the context of significant amyloid deposition, may provide a second hit necessary for the clinical manifestation of the disease. As risk factors for the development of WMHs are modifiable, these findings suggest intervention and prevention strategies for the clinical syndrome of AD.

0 Followers
 · 
156 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cholinesterase enzymes metabolize acetylcholine (ACh). Inhibition of acetylcholinesterase (AChE) in damaged but functional cholinergic synapses in the brains of dementia patients increases intrasynaptic ACh. This enhances cholinergic neurotransmission and improves cognition. There is a window of opportunity for this symptomatic treatment effect that opens and closes during the course of dementia depending on when significant synaptic damage occurs. Cholinesterases also metabolize extrasynaptic ACh with butyrylcholinesterase (BuChE) apparently playing the major dynamic role in extracellular ACh homeostasis. Extracellular ACh plays a key regulatory role in controlling the reactivity and functional states of non-excitable cells, such as neuroglia. Current inhibitors of cholinesterases (ChEIs) have similar effects on intrasynaptic ACh, but differ markedly in abilities to upregulate extracellular AChE, inhibit BuChE, and influence the fibrilization of amyloid-β peptides. Importantly, ChEIs can have detrimental disease modifying effects in particular individuals characterized by age, gender, and genotype. In contrast, preliminary evidence suggests that the right dose of the right ChEI in the right patient might significantly slow the progression of neurodegenerative processes. For a particular patient, understanding the condition of cholinergic synapses and the reactivity and functional status of neuroglia could allow administration of appropriate ChEI therapy for symptomatic and disease modifying benefits.
    Journal of Alzheimer's disease: JAD 11/2014; 44(4). DOI:10.3233/JAD-142268 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the interesting features of the amyloid tracer Pittsburgh compound B (PiB) is that it generates a signal in the white matter (WM) in both healthy subjects and cognitively impaired individuals. This characteristic gave rise to the possibility that PiB could be used to trace WM pathology. In a group of cognitively healthy elderly we examined PiB retention in normal-appearing WM (NAWM) and WM lesions (WML), one of the most common brain pathologies in aging.
    European journal of nuclear medicine and molecular imaging 10/2014; DOI:10.1007/s00259-014-2897-1 · 5.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interstitial concentration of amyloid beta (Aß) is positively related to synaptic activity in animal experiments. In humans, Aß deposition in Alzheimer's disease overlaps with cortical regions highly active earlier in life. White matter lesions (WML) disrupt connections between gray matter (GM) regions which in turn changes their activation patterns. Here, we tested if WML are related to Aß accumulation (measured with PiB-PET) and glucose uptake (measured with FDG-PET) in connected GM. WML masks from 72 cognitively normal (age 61.7±9.6years, 71% women) individuals were obtained from T2-FLAIR. MRI and PET images were normalized into common space, segmented and parcellated into gray matter (GM) regions. The effects of WML on connected GM regions were assessed using the Change in Connectivity (ChaCo) score. Defined for each GM region, ChaCo is the percentage of WM tracts connecting to that region that pass through the WML mask. The regional relationship between ChaCo, glucose uptake and Aß was explored via linear regression. Subcortical regions of the bilateral caudate, putamen, calcarine, insula, thalamus and anterior cingulum had WM connections with the most lesions, followed by frontal, occipital, temporal, parietal and cerebellar regions. Regional analysis revealed that GM with more lesions in connecting WM and thus impaired connectivity had lower FDG-PET (r=0.20, p<0.05 corrected) and lower PiB uptake (r=0.28, p<0.05 corrected). Regional regression also revealed that both ChaCo (β=0.045) and FDG-PET (β=0.089) were significant predictors of PiB. In conclusion, brain regions with more lesions in connecting WM had lower glucose metabolism and lower Aß deposition.
    NeuroImage 07/2014; 100. DOI:10.1016/j.neuroimage.2014.06.060 · 6.13 Impact Factor

Similar Publications