Article

A proof of principle clinical trial to determine whether conjugated linoleic acid modulates the lipogenic pathway in human breast cancer tissue.

Section of Hematology/Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center (MM & GS) and White River Junction VA Hospital (NK), and the Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
Breast Cancer Research and Treatment (Impact Factor: 4.2). 02/2013; 138(1):175-83. DOI: 10.1007/s10549-013-2446-9
Source: PubMed

ABSTRACT Conjugated linoleic acid (CLA) is widely used as a "nutraceutical" for weight loss. CLA has anticancer effects in preclinical models, and we demonstrated in vitro that this can be attributed to the suppression of fatty acid (FA) synthesis. We tested the hypothesis that administration of CLA to breast cancer patients would inhibit expression of markers related to FA synthesis in tumor tissue, and that this would suppress tumor proliferation. Women with Stage I-III breast cancer were enrolled into an open label study and treated with CLA (1:1 mix of 9c,11t- and 10t,12c-CLA isomers, 7.5 g/d) for ≥10 days before surgery. Fasting plasma CLA concentrations measured pre- and post-CLA administration, and pre/post CLA tumor samples were examined by immunohistochemistry for Spot 14 (S14), a regulator of FA synthesis, FA synthase (FASN), an enzyme of FA synthesis, and lipoprotein lipase (LPL), the enzyme that allows FA uptake. Tumors were also analyzed for expression of Ki-67 and cleaved caspase 3. 24 women completed study treatment, and 23 tumors were evaluable for the primary endpoint. The median duration of CLA therapy was 12 days, and no significant toxicity was observed. S14 expression scores decreased (p = 0.003) after CLA administration. No significant change in FASN or LPL expression was observed. Ki-67 scores declined (p = 0.029), while cleaved caspase 3 staining was unaffected. Decrements in S14 or Ki-67 did not correlate with fasting plasma CLA concentrations at surgery. Breast tumor tissue expression of S14, but not FASN or LPL, was decreased after a short course of treatment with 7.5 g/day CLA. This was accompanied by reductions in the proliferation index. CLA consumption was well-tolerated and safe at this dose for up to 20 days. Overall, CLA may be a prototype compound to target fatty acid synthesis in breast cancers with a "lipogenic phenotype".

2 Followers
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The anti-diabetic drug metformin (1,1-dimethylbiguanide hydrochloride) reduces both the incidence and mortality of several types of cancer. Metformin has been shown to selectively kill cancer stem cells, and triple-negative breast cancer (TNBC) cell lines are more sensitive to the effects of metformin as compared to luminal breast cancer. However, the mechanism underlying the enhanced susceptibility of TNBC to metformin has not been elucidated. Expression profiling of metformin-treated TNBC lines revealed fatty acid synthase (FASN) as one of the genes most significantly downregulated following 24 h of treatment, and a decrease in FASN protein was also observed. Since FASN is critical for de novo fatty acid synthesis and is important for the survival of TNBC, we hypothesized that FASN downregulation facilitates metformin-induced apoptosis. Profiling studies also exposed a rapid metformin-induced increase in miR-193 family members, and miR-193b directly targets the FASN 3'UTR. Addition of exogenous miR-193b mimic to untreated TNBC cells decreased FASN protein expression and increased apoptosis of TNBC cells, while spontaneously immortalized, non-transformed breast epithelial cells remained unaffected. Conversely, antagonizing miR-193 activity impaired the ability of metformin to decrease FASN and cause cell death. Further, the metformin-stimulated increase in miR-193 resulted in reduced mammosphere formation by TNBC lines. These studies provide mechanistic insight into metformin-induced killing of TNBC.
    09/2014; 8(6). DOI:10.1007/s12672-014-0188-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IntroductionSpot14 (S14), encoded by the THRSP gene, regulates de novo fatty acid synthesis in the liver, adipose, and lactating mammary gland. We recently showed that S14 stimulated fatty acid synthase (FASN) activity in vitro, and increased the synthesis of fatty acids in mammary epithelial cells in vivo. Elevated de novo fatty acid synthesis is a distinguishing feature of many solid tumors compared with adjacent normal tissue. This characteristic is thought to be acquired during tumor progression, as rapidly proliferating cells have a heightened requirement for membrane phospholipids. Further, overexpression of FASN is sufficient to stimulate cell proliferation. While many studies have focused on the FASN enzyme in cancer biology, few studies have addressed the roles of proteins that modify FASN activity, such as S14.Methods Tumor fatty acids were modulated using two mouse models, mouse mammary tumor virus (MMTV)-neu mice overexpressing S14 and MMTV-polyomavirus middle T antigen (PyMT) mice lacking S14, and associations between elevated or impaired fatty acid synthesis on tumor latency, growth, metastasis, and signaling pathways were investigated. We evaluated S14-dependent gene expression profiles in mouse tumors by microarray and used publicly available microarray datasets of human breast tumors.ResultsS14 overexpression in the MMTV-Neu transgenic model is associated with elevated medium-chain fatty acids, increased proliferation and a shorter tumor latency, but reduced tumor metastasis compared to controls. Loss of S14 in the MMTV-PyMT model decreased FASN activity and the synthesis of medium-chain fatty acids but did not alter tumor latency. Impaired fatty acid synthesis was associated with reduced solid tumor cell proliferation, the formation of cystic lesions in some animals, and decreased phosphorylation of Src and protein kinase B (Akt). Analysis of gene expression in these mouse and human tumors revealed a relationship between S14 status and the expression of genes associated with luminal epithelial differentiation.Conclusions This study demonstrates a potential role for S14 in regulating mammary tumor growth and fatty acid synthesis in vivo. Furthermore, these results suggest that modulating the amount of medium chain fatty acids, by changing the levels of S14, has the potential to impact malignant mammary tumor phenotypes.
    Breast cancer research: BCR 12/2014; 16(6):481. DOI:10.1186/s13058-014-0481-z · 5.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dietary fatty acids (FA) are increasingly recognized as major biologic regulators and have properties that relate to health outcomes and disease. Conjugated linoleic acid (CLA) is a generic term denoting a group of isomers of linoleic acid (C18:2, n-6) with a conjugated double bond. CLA has attracted increased research interest because of its health-promoting benefits and biological functions. In a variety of studies, CLA has been shown to impact immune function and has protective effects against cancer, obesity, diabetes, and atherosclerosis in animal studies and in different human cell lines. Studies investigating the mechanisms involved in the biological functions of CLA are emerging with results from both in vivo and in vitro studies. Most of the biological effects have been attributed to the c9,t11-CLA and t10,c12-CLA isomers. The purpose of this review is to discuss the effects of CLA on health and disease and the possible mechanisms for CLA activities.
    Journal of Functional Foods 05/2015; 15:314-325. DOI:10.1016/j.jff.2015.03.050 · 4.48 Impact Factor