Nitrogen removal by a nitritation- anammox bioreactor at low temperature.

Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands.
Applied and Environmental Microbiology (Impact Factor: 3.95). 02/2013; DOI: 10.1128/AEM.03987-12
Source: PubMed

ABSTRACT Currently, nitritation-anammox (anaerobic ammonium oxidation) bioreactors are designed to treat wastewaters with high ammonium concentration at mesophilic temperatures (25 - 40 °C). The implementation of this technology at ambient temperatures for nitrogen removal from municipal wastewater following carbon removal could lead to more sustainable technology with energy and cost savings. However the application of nitritation-anammox bioreactors at low temperature (characteristic of municipal wastewaters expect tropical and subtropical regions) is not yet explored. To this end, a laboratory-scale (5 l) nitritation-anammox sequencing batch reactor was adapted to 12 °C in 10 days and operated for more than 300 days to investigate the feasibility of nitrogen removal from synthetic pre-treated municipal wastewater by the combination of aerobic ammonium-oxidizing bacteria (AOB) and anammox. The activities of both anammox and AOB were high enough to remove more than 90 % of the supplied nitrogen. Multiple aspects, including the presence and activity of anammox, AOB, and aerobic nitrite oxidizers (NOB) and nitrous oxide (N(2)O) emission were monitored to evaluate the stability of the bioreactor at 12 °C. There was no nitrite accumulation throughout the operational period indicating that anammox bacteria were active at 12 °C and that AOB and anammox bacteria outcompeted NOB. Moreover, our results showed that sludge from wastewater treatment plants designed for treating high ammonium load wastewaters could be used as seeding sludge for wastewater treatment plants aimed at treating municipal wastewater that has low temperature and low ammonium concentrations.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To explore the changes in the microbial community structure during the recovery process of an anammox reactor after a temperature shock, the 454-pyrosequencing technique was used. The temperatures shock reduced the nitrogen removal rate up to 92% compared to that just before the temperature shock, and it took 70 days to recover a similar nitrogen removal rate to that before the temperature shock (ca. 0.30 g N L-1 d-1). Pyrosequencing results indicated that microbial diversity in the reactor decreased as the reactor progressively recovered from the temperature shock. Anammox bacteria were accounted as 6%, 35% and 46% of total sequence reads in samples taken 13, 45 and 166 days after the temperature shock. These results were in agreement with N-removal performance results and anammox activity measured in the reactor during the recovery process. An anammox specific primer was used to precisely determine the anammox species in the biomass samples.
    Bioresource Technology 04/2015; 181:207–213. · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m-3·d-1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria.
    International Journal of Environmental Research and Public Health 07/2014; 11(7):6955-6978. · 1.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autotrophic nitrogen removal appears as a prerequisite for the implementation of energy autarchic municipal wastewater treatment plants. Whilst the application of anammox related technologies in the side-stream is at present state of the art, the feasibility of this energy-efficient process in main-stream conditions is still under investigation. Lower operating temperatures and ammonium concentrations, together with a demand for high and stable nitrogen removal efficiency, represent the main challenges to overcome for this appealing new frontier of the waste water treatment field. In this study we report the short-term effect of temperature on the maximum biomass specific activity of anaerobic ammonium oxidizing (anammox) bacteria as evaluated by means of batch tests. The experiments were performed on anammox biomass sampled from two full-scale reactors and two lab-scale reactors, all characterized by different reactor configurations and operating conditions. The results indicate that for the anammox conversion the temperature dependency cannot be accurately modeled by one single Arrhenius coefficient (i.e. Θ) as typically applied for other biological processes. The temperature effect is increasing at lower temperatures. Adaptation of anammox bacteria after long term cultivation at 20 and 10°C was observed. Implications for modeling and process design are finally discussed. Biotechnol. Bioeng. © 2014 Wiley Periodicals, Inc.
    Biotechnology and Bioengineering 07/2014; · 4.16 Impact Factor

Full-text (2 Sources)

Available from
Jul 3, 2014