Article

Nitrogen removal by a nitritation- anammox bioreactor at low temperature.

Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands.
Applied and Environmental Microbiology (Impact Factor: 3.95). 02/2013; DOI: 10.1128/AEM.03987-12
Source: PubMed

ABSTRACT Currently, nitritation-anammox (anaerobic ammonium oxidation) bioreactors are designed to treat wastewaters with high ammonium concentration at mesophilic temperatures (25 - 40 °C). The implementation of this technology at ambient temperatures for nitrogen removal from municipal wastewater following carbon removal could lead to more sustainable technology with energy and cost savings. However the application of nitritation-anammox bioreactors at low temperature (characteristic of municipal wastewaters expect tropical and subtropical regions) is not yet explored. To this end, a laboratory-scale (5 l) nitritation-anammox sequencing batch reactor was adapted to 12 °C in 10 days and operated for more than 300 days to investigate the feasibility of nitrogen removal from synthetic pre-treated municipal wastewater by the combination of aerobic ammonium-oxidizing bacteria (AOB) and anammox. The activities of both anammox and AOB were high enough to remove more than 90 % of the supplied nitrogen. Multiple aspects, including the presence and activity of anammox, AOB, and aerobic nitrite oxidizers (NOB) and nitrous oxide (N(2)O) emission were monitored to evaluate the stability of the bioreactor at 12 °C. There was no nitrite accumulation throughout the operational period indicating that anammox bacteria were active at 12 °C and that AOB and anammox bacteria outcompeted NOB. Moreover, our results showed that sludge from wastewater treatment plants designed for treating high ammonium load wastewaters could be used as seeding sludge for wastewater treatment plants aimed at treating municipal wastewater that has low temperature and low ammonium concentrations.

2 Followers
 · 
200 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: e l vertido de aguas residuales con exceso de nutrientes, como nitrógeno y fósforo, en los ecosistemas provoca el crecimiento y proliferación de determinadas plantas, algas y organismos, que consumen una gran cantidad del oxígeno disuelto del medio. Esto provoca una disminución del oxígeno disponible para otras especies y, consecuentemente, se reduce la diversidad del ecosistema y da lugar al problema de la eutrofización. El tratamiento de estas aguas residuales, que se generan como consecuencia de la actividad humana (doméstica, agrícola e industrial), está regulado desde la Comunidad Europea (Directiva 91/271/). El sistema más ampliamente utilizado en las estaciones depuradoras de aguas residuales (EDARs) es el denominado de “lodos activos”, donde se tiene una biomasa de microorganismos en suspensión que llevan a cabo una serie de reacciones biológicas encaminadas a eliminar la materia orgánica y nutrientes que contaminan el agua residual. La eliminación convencional de nitrógeno en este sistema de lodos activos está basada en el proceso biológico de nitrificación-desnitrificación. En este proceso el nitrógeno, que está presente fundamentalmente en forma de amonio, es convertido por medio de reacciones biológicas a nitrógeno gas. En el proceso de nitrificación el nitrógeno amoniacal es oxidado a nitrito y posteriormente éste es oxidado a nitrato, mediante la intervención de bacterias oxidantes de amonio (BOA) y oxidantes de nitrito (BON), respectivamente. A continuación, en el proceso de desnitrificación, el nitrato formado durante la nitrificación es reducido a nitrógeno gas en condiciones anóxicas, consumiéndose materia orgánica. Aunque el sistema de lodos activos ya ha cumplido 100 años y sigue siendo el más utilizado en las EDARs, en los últimos años se han investigado y desarrollado nuevas tecnologías que permitirán en el futuro un tratamiento más eficaz de las aguas residuales a menor coste. Así, como alternativa a los procesos de nitrificación-desnitrificación, se plantea el denominado proceso anammox (ANaerobic AMMonia OXidation). En este proceso la oxidación de amonio a nitrógeno gas se realiza utilizando nitrito como aceptor de electrones. En este caso no es necesario añadir materia orgánica ni oxígeno, lo cual permite ahorrar los costes de operación asociados en la eliminación de nitrógeno en las aguas residuales. http://icct.eu/wp-content/uploads/2014/10/revista12-1.swf
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many technologies currently available for nitrogen removal are not suitable for the treatment of mine and quarry wastewaters containing nitrogenous compounds, particularly in cold environments, due to high treatment costs or stringent operating parameters. A combination of geochemical sorption and electrochemical techniques is potentially most suitable for the treatment of large volumes of wastewater containing multiple nitrogenous compounds. Electrochemical processes utilizing enhanced ammonia stripping coupled with sorption techniques to preconcentrate nitrogenous compounds potentially suits a large volume wastewater stream with low total nitrogen concentration, requires only low electrical potential for operation, and may result in an ammonium product for reuse.
    Critical Reviews in Environmental Science and Technology 12/2014; 45(7):703-748. DOI:10.1080/10643389.2014.900238 · 3.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitrogen removal in the main stream of the WWTPs to improve the energetic efficiency. The application of Anammox based processes can save 28% of costs. Nitrite oxidation is the main drawback to apply those processes to the main stream. a b s t r a c t Nowadays the application of Anammox based processes in the wastewater treatment plants has given a step forward. The new goal consists of removing the nitrogen present in the main stream of the WWTPs to improve their energetic efficiencies. This new approach aims to remove not only the nitrogen but also to provide a better use of the energy contained in the organic matter. The organic matter will be removed either by an anaerobic psychrophilic membrane reactor or an aerobic stage operated at low solids retention time followed by an anaerobic digestion of the generated sludge. Then ammonia coming from these units will be removed in an Anammox based process in a single unit system. The second strategy provides the best results in terms of operational costs and would allow reductions of about 28%. Recent research works performed on Anammox based processes and operated at relatively low temperatures and/or low ammonia concentrations were carried out in single-stage systems using biofilms, granules or a mixture of flocculent nitrifying and granular Anammox biomasses. These systems allowed the appropriated retention of Anammox and ammonia oxidizing bacteria but also the proliferation of nitrite oxidizing bacteria which seems to be the main drawback to achieve the required effluent quality for disposal. Therefore, prior to the implementation of the Anammox based processes at full scale to the water line, a reliable strategy to avoid nitrite oxidation should be defined in order to maintain the process stability and to obtain the desired effluent quality. If not, the application of a post-denitrification step should be necessary.
    Chemosphere 01/2015; DOI:10.1016/j.chemosphere.2015.03.058 · 3.50 Impact Factor

Full-text (2 Sources)

Download
53 Downloads
Available from
Jul 3, 2014