Article

The NeST Long ncRNA Controls Microbial Susceptibility and Epigenetic Activation of the Interferon-γ Locus.

Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
Cell (Impact Factor: 33.12). 02/2013; 152(4):743-54. DOI: 10.1016/j.cell.2013.01.015
Source: PubMed

ABSTRACT Long noncoding RNAs (lncRNAs) are increasingly appreciated as regulators of cell-specific gene expression. Here, an enhancer-like lncRNA termed NeST (nettoie Salmonella pas Theiler's [cleanup Salmonella not Theiler's]) is shown to be causal for all phenotypes conferred by murine viral susceptibility locus Tmevp3. This locus was defined by crosses between SJL/J and B10.S mice and contains several candidate genes, including NeST. The SJL/J-derived locus confers higher lncRNA expression, increased interferon-γ (IFN-γ) abundance in activated CD8(+) T cells, increased Theiler's virus persistence, and decreased Salmonella enterica pathogenesis. Transgenic expression of NeST lncRNA alone was sufficient to confer all phenotypes of the SJL/J locus. NeST RNA was found to bind WDR5, a component of the histone H3 lysine 4 methyltransferase complex, and to alter histone 3 methylation at the IFN-γ locus. Thus, this lncRNA regulates epigenetic marking of IFN-γ-encoding chromatin, expression of IFN-γ, and susceptibility to a viral and a bacterial pathogen.

1 Follower
 · 
104 Views
  • MicroRNAs and Other Non-Coding RNAs in Inflammation, Edited by Catherine M. Greene, 01/2015: chapter 2: pages 21-42; Springer International Publishing., ISBN: 9783319136882
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although analysis pipelines have been developed to use RNA-seq to identify long non-coding RNAs (lncRNAs), inference of their biological and pathological relevance remains a challenge. As a result, most transcriptome studies of autoimmune disease have only assessed protein-coding transcripts. We used RNA-seq data from 99 lesional psoriatic, 27 uninvolved psoriatic, and 90 normal skin biopsies, and applied computational approaches to identify and characterize expressed lncRNAs. We detect 2,942 previously annotated and 1,080 novel lncRNAs which are expected to be skin specific. Notably, over 40% of the novel lncRNAs are differentially expressed and the proportions of differentially expressed transcripts among protein-coding mRNAs and previously-annotated lncRNAs are lower in psoriasis lesions versus uninvolved or normal skin. We find that many lncRNAs, in particular those that are differentially expressed, are co-expressed with genes involved in immune related functions, and that novel lncRNAs are enriched for localization in the epidermal differentiation complex. We also identify distinct tissue-specific expression patterns and epigenetic profiles for novel lncRNAs, some of which are shown to be regulated by cytokine treatment in cultured human keratinocytes. Together, our results implicate many lncRNAs in the immunopathogenesis of psoriasis, and our results provide a resource for lncRNA studies in other autoimmune diseases.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long non-coding RNAs (lncRNAs) constitute a significant portion of mammalian genome, yet the physiological importance of lncRNAs is largely unknown. Here, we identify a liver-enriched lncRNA in mouse that we term liver-specific triglyceride regulator (lncLSTR). Mice with a liver-specific depletion of lncLSTR exhibit a marked reduction in plasma triglyceride levels. We show that lncLSTR depletion enhances apoC2 expression, leading to robust lipoprotein lipase activation and increased plasma triglyceride clearance. We further demonstrate that the regulation of apoC2 expression occurs through an FXR-mediated pathway. LncLSTR forms a molecular complex with TDP-43 to regulate expression of Cyp8b1, a key enzyme in the bile acid synthesis pathway, and engenders an in vivo bile pool that induces apoC2 expression through FXR. Finally, we demonstrate that lncLSTR depletion can reduce triglyceride levels in a hyperlipidemia mouse model. Taken together, these data support a model in which lncLSTR regulates a TDP-43/FXR/apoC2-dependent pathway to maintain systemic lipid homeostasis. Copyright © 2015 Elsevier Inc. All rights reserved.