Magnetic resonance of calcified tissues

Laboratory for Structural NMR Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, United States. Electronic address: .
Journal of Magnetic Resonance (Impact Factor: 2.3). 01/2013; 229. DOI: 10.1016/j.jmr.2012.12.011
Source: PubMed

ABSTRACT MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues - key among them bone - are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author's laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The demand for functional imaging in clinical medicine is comprehensive. Although the gold standard for the functional imaging of human bones in clinical settings is still radionuclide-based imaging modalities, nonionizing noninvasive imaging technology in small animals has greatly advanced in recent decades, especially the diffuse optical imaging to which Britton Chance made tremendous contributions. The evolution of imaging probes, instruments, and computation has facilitated exploration in the complicated biomedical research field by allowing longitudinal observation of molecular events in live cells and animals. These research-imaging tools are being used for clinical applications in various specialties, such as oncology, neuroscience, and dermatology. The Bone, a deeply located mineralized tissue, presents a challenge for noninvasive functional imaging in humans. Using nanoparticles (NP) with multiple favorable properties as bioimaging probes has provided orthopedics an opportunity to benefit from these noninvasive bone-imaging techniques. This review highlights the historical evolution of radionuclide-based imaging, computed tomography, positron emission tomography, and magnetic resonance imaging, diffuse optics-enabled in vivo technologies, vibrational spectroscopic imaging, and a greater potential for using NPs for biomedical imaging.
    Academic radiology 02/2014; 21(2):281-301. DOI:10.1016/j.acra.2013.11.016 · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fieldwork performed during the last 15 years in various Early Pleistocene East African sites has significantly enlarged the fossil record of Homo erectus sensu lato (s.l.). Additional evidence comes from the Danakil Depression of Eritrea, where over 200 late Early to early Middle Pleistocene sites have been identified within a ∼1000 m-thick sedimentary succession outcropping in the Dandiero Rift Basin, near Buia. Along with an adult cranium (UA 31), which displays a blend of H. erectus-like and derived morpho-architectural features and three pelvic remains, two isolated permanent incisors (UA 222 and UA 369) have also been recovered from the 1 Ma (millions of years ago) Homo-bearing outcrop of Uadi Aalad. Since 2010, our surveys have expanded to the nearby (4.7 km) site of Mulhuli-Amo (MA). This is a fossiliferous area that has been preliminarily surveyed because of its exceptional concentration of Acheulean stone tools. So far, the site has yielded 10 human remains, including the unworn crown of a lower permanent molar (MA 93). Using diverse analytical tools (including high resolution μCT and μMRI), we analysed the external and internal macromorphology and microstructure of the three specimens, and whenever possible compared the results with similar evidence from early Homo, H. erectus s.l., H. antecessor, H. heidelbergensis (from North Africa), Neanderthals and modern humans. We also assessed the UA 369 lower incisor from Uadi Aalad for root completion timing and showed that it compares well with data for root apex closure in modern human populations.
    Journal of Human Evolution 05/2014; 74. DOI:10.1016/j.jhevol.2014.04.005 · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteoporotic and age-related fractures are a significant public health problem. The current standard of osteoporosis assessment via bone mineral density has been shown to be inadequate for fracture risk predictions highlighting the importance of material composition and structural design of bone in determining skeletal fragility. Bone is a hierarchical material that derives its fracture resistance from various mechanisms that act at length scales ranging from nano- to macroscale. Recent research efforts have focussed on the understanding of bone fracture based on this hierarchical structure to provide a more reliable assessment of fracture risk. Understanding the function, contribution and interaction of each length scale to bone toughness is a crucial step to develop new strategies for fracture risk assessment, fracture prevention, and development of therapeutic interventions for disease and age-related changes in bone. This review presents a hierarchical perspective of bone toughness ranging from nano- to macroscale and reports on the current state of knowledge in the areas of experimental and computational approaches to bone fracture.
    International Materials Reviews 06/2014; 59(5):245-263. DOI:10.1179/1743280414Y.0000000031 · 6.55 Impact Factor