Article

Magnetic resonance of calcified tissues

Laboratory for Structural NMR Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, United States. Electronic address: .
Journal of Magnetic Resonance (Impact Factor: 2.32). 01/2013; 229. DOI: 10.1016/j.jmr.2012.12.011
Source: PubMed

ABSTRACT MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues - key among them bone - are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author's laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI.

0 Followers
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nowadays, a huge number of papers have documented the ability of di magnetic resonance imaging (D-MRI) to highlight normal and pathological conditions in a variety of cerebral, abdominal, and cardiovascular applications. To date, however, the role of D-MRI to investigate musculoskeletal tissue, speci the cancellous bone, has not been extensively explored. In order to determine potentially useful applications of di techniques in musculoskeletal investigation, D-MRI applications to detect osteoporosis disease were reviewed and further explained.
    BioMed Research International 03/2015; http://dx.doi.org/10.1155/2015/948610(Article ID 948610):1-10. DOI:10.1155/2015/948610 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteoporotic and age-related fractures are a significant public health problem. The current standard of osteoporosis assessment via bone mineral density has been shown to be inadequate for fracture risk predictions highlighting the importance of material composition and structural design of bone in determining skeletal fragility. Bone is a hierarchical material that derives its fracture resistance from various mechanisms that act at length scales ranging from nano- to macroscale. Recent research efforts have focussed on the understanding of bone fracture based on this hierarchical structure to provide a more reliable assessment of fracture risk. Understanding the function, contribution and interaction of each length scale to bone toughness is a crucial step to develop new strategies for fracture risk assessment, fracture prevention, and development of therapeutic interventions for disease and age-related changes in bone. This review presents a hierarchical perspective of bone toughness ranging from nano- to macroscale and reports on the current state of knowledge in the areas of experimental and computational approaches to bone fracture.
    International Materials Reviews 06/2014; 59(5):245-263. DOI:10.1179/1743280414Y.0000000031 · 6.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To develop and evaluate a new method for detecting calcium deposits using their characteristic magnetic susceptibility effects on magnetic resonance (MR) images at high fields and demonstrate its potential in practice for detecting breast microcalcifications. Characteristic dipole signatures of calcium deposits were detected in magnetic resonance phase images by computing the cross-correlation between the acquired data and a library of templates containing simulated phase patterns of spherical deposits. The influence of signal-to-noise ratio and various other MR parameters on the results were assessed using simulations and validated experimentally. The method was tested experimentally for detection of calcium fragments within gel phantoms and calcium-like inhomogeneities within chicken tissue at 7 T with optimized MR acquisition parameters. The method was also evaluated for detection of simulated microcalcifications, modeled from biopsy samples of malignant breast cancer, inserted in silico into breast magnetic resonance imaging (MRIs) of healthy subjects at 7 T. For both assessments of calcium fragments in phantoms and biopsy-based simulated microcalcifications in breast MRIs, receiver operator characteristic curve analyses were performed to determine the cross-correlation index cutoff, for achieving optimal sensitivity and specificity, and the area under the curve (AUC), for measuring the method's performance. The method detected calcium fragments with sizes of 0.14-0.79 mm, 1 mm calcium-like deposits, and simulated microcalcifications with sizes of 0.4-1.0 mm in images with voxel sizes between (0.2 mm)(3) and (0.6 mm)(3). In images acquired at 7 T with voxel sizes of (0.2 mm)(3)-(0.4 mm)(3), calcium fragments (size 0.3-0.4 mm) were detected with a sensitivity, specificity, and AUC of 78%-90%, 51%-68%, and 0.77%-0.88%, respectively. In images acquired with a human 7 T scanner, acquisition times below 12 min, and voxel sizes of (0.4 mm)(3)-(0.6 mm)(3), simulated microcalcifications with sizes of 0.6-1.0 mm were detected with a sensitivity, specificity, and AUC of 75%-87%, 54%-87%, and 0.76%-0.90%, respectively. However, different microcalcification shapes were indistinguishable. The new method is promising for detecting relatively large microcalcifications (i.e., 0.6-0.9 mm) within the breast at 7 T in reasonable times. Detection of smaller deposits at high field may be possible with higher spatial resolution, but such images require relatively long scan times. Although mammography can detect and distinguish the shape of smaller microcalcifications with superior sensitivity and specificity, this alternative method does not expose tissue to ionizing radiation, is not affected by breast density, and can be combined with other MRI methods (e.g., dynamic contrast-enhanced MRI and diffusion weighted MRI), to potentially improve diagnostic performance.
    Medical Physics 03/2015; 42(3):1436. DOI:10.1118/1.4908009 · 3.01 Impact Factor