Article

Progress with rotavirus vaccines: summary of the Tenth International Rotavirus Symposium.

CDC, Atlanta, GA, USA.
Expert Review of Vaccines (Impact Factor: 4.22). 02/2013; 12(2):113-7. DOI: 10.1586/erv.12.148
Source: PubMed

ABSTRACT Tenth International Rotavirus Symposium Bangkok, Thailand, 19-21 September 2012 Over 350 scientific, public and private sector experts from 47 countries convened at the Tenth International Rotavirus Symposium in Bangkok, Thailand on 19-21 September 2012 to discuss progress in the prevention and control of rotavirus, the leading cause of diarrhea hospitalizations and deaths among young children worldwide. Participants discussed data on the burden and epidemiology of rotavirus disease, results of trials of rotavirus vaccines, postmarketing data on vaccine impact and safety from countries that have implemented rotavirus vaccination programs, new insights in rotavirus pathogenesis, immunity and strain diversity, and key issues related to vaccine policy and introduction.

1 Follower
 · 
72 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rotavirus (RV) is a leading cause of severe gastroenteritis (GE) in children across the world. As there is a lack of epidemiological data for RV gastroenteritis (RVGE) in Saudi Arabia, this hospital-based study was designed to estimate the disease burden of RVGE and assess the prevalent RV types in Saudi children younger than 5 years of age. Children hospitalized for acute GE were enrolled at four pediatric referral hospitals in Saudi Arabia. The study was conducted from February 2007 to March 2008 and used the World Health Organization's generic protocol for RVGE surveillance. The Vesikari severity scale was used to assess the severity of RVGE. Stool samples were tested for RV using an enzyme-linked immunosorbent assay. Samples were further typed by reverse transcriptase-polymerase chain reaction and hybridization assay for determining the G and P types. A total of 1,007 children were enrolled; the final analysis included 970 children, of whom 395 were RV positive, 568 were RV negative, and seven had unknown RV status. The proportion of RVGE among GE hospitalizations was 40.7% (95% confidence interval: 37.6-43.9). The highest percentage of RVGE hospitalizations (83.1%) was seen in children younger than 2 years of age. The highest proportion of RV among GE hospitalizations was in June 2007 with 57.1%. The most common RV types detected were G1P[8] (49.3%), G1G9P[8] (13.2%), and G9P[8] (9.6%). Before hospitalization, severe GE episodes occurred in 88.1% RV-positive and 79.6% RV-negative children. Overall, 94% children had recovered by the time they were discharged. Two children (one RV positive and one RV negative) died due to GE complications. RVGE is responsible for a high proportion of hospitalizations in Saudi children younger than 5 years of age. Routine RV vaccination has therefore been introduced into the national immunization program and may help reduce the morbidity, mortality, and disease burden associated with RVGE in Saudi Arabia.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rotavirus virus-like particles (RV-VLPs) are potential alternative non-live vaccine candidates due to their high immunogenicity. They mimic the natural conformation of native viral proteins but cannot replicate because they do not contain genomic material which makes them safe. To date, most RV-VLPs have been derived from cell culture adapted strains or common G1 and G3 rotaviruses that have been circulating in communities for some time. In this study, chimaeric RV-VLPs were generated from the consensus sequences of African rotaviruses (G2, G8, G9 or G12 strains associated with either P[4], P[6] or P[8] genotypes) characterised directly from human stool samples without prior adaptation of the wild type strains to cell culture. Codon-optimised sequences for insect cell expression of genome segments 2 (VP2), 4 (VP4), 6 (VP6) and 9 (VP7) were cloned into a modified pFASTBAC vector, which allowed simultaneous expression of up to four genes using the Bac-to-Bac Baculovirus Expression System (BEVS; Invitrogen). Several combinations of the genome segments originating from different field strains were cloned to produce double-layered RV-VLPs (dRV-VLP; VP2/6), triple-layered RV-VLPs (tRV-VLP; VP2/6/7 or VP2/6/7/4) and chimaeric tRV-VLPs. The RV-VLPs were produced by infecting Spodoptera frugiperda 9 and Trichoplusia ni cells with recombinant baculoviruses using multi-cistronic, dual co-infection and stepwise-infection expression strategies. The size and morphology of the RV-VLPs, as determined by transmission electron microscopy, revealed successful production of RV-VLPs. The novel approach of producing tRV-VLPs, by using the consensus insect cell codon-optimised nucleotide sequence derived from dsRNA extracted directly from clinical specimens, should speed-up vaccine research and development by by-passing the need to adapt rotaviruses to cell culture. Other problems associated with cell culture adaptation, such as possible changes in epitopes, can also be circumvented. Thus, it is now possible to generate tRV-VLPs for evaluation as non-live vaccine candidates for any human or animal field rotavirus strain.
    PLoS ONE 09/2014; 9(9):e105167. DOI:10.1371/journal.pone.0105167 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A prospective study was performed to determine the molecular characteristics of rotaviruses circulating among children aged <5 years in Bhutan. Stool samples were collected from February 2010 through January 2011 from children who attended two tertiary care hospitals in the capital Thimphu and the eastern regional headquarters, Mongar. The samples positive for rotavirus was mainly comprised genotype G1, followed by G12 and G9. The VP7 and VP4 genes of all genotypes clustered mainly with those of neighboring countries, thereby indicating that they shared common ancestral strains. The VP7 gene of Bhutanese G1 strains belonged to lineage 1c, which differed from the lineages of vaccine strains. Mutations were also identified in the VP7 gene of G1 strains, which may be responsible for neutralization escape strains. Furthermore, we found that lineage 4 of P[8] genotype differed antigenically from the vaccine strains, and mutations were identified in Bhutanese strains of lineage 3. The distribution of rotavirus genotypes varies among years, therefore further research is required to determine the distribution of rotavirus strain genotypes in Bhutan.
    PLoS ONE 10/2014; 9(10):e110795. DOI:10.1371/journal.pone.0110795 · 3.53 Impact Factor

Full-text (2 Sources)

Download
13 Downloads
Available from
Sep 17, 2014