Article

Progress with rotavirus vaccines: summary of the Tenth International Rotavirus Symposium.

CDC, Atlanta, GA, USA.
Expert Review of Vaccines (Impact Factor: 4.22). 02/2013; 12(2):113-7. DOI: 10.1586/erv.12.148
Source: PubMed

ABSTRACT Tenth International Rotavirus Symposium Bangkok, Thailand, 19-21 September 2012 Over 350 scientific, public and private sector experts from 47 countries convened at the Tenth International Rotavirus Symposium in Bangkok, Thailand on 19-21 September 2012 to discuss progress in the prevention and control of rotavirus, the leading cause of diarrhea hospitalizations and deaths among young children worldwide. Participants discussed data on the burden and epidemiology of rotavirus disease, results of trials of rotavirus vaccines, postmarketing data on vaccine impact and safety from countries that have implemented rotavirus vaccination programs, new insights in rotavirus pathogenesis, immunity and strain diversity, and key issues related to vaccine policy and introduction.

1 Bookmark
 · 
69 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rotavirus virus-like particles (RV-VLPs) are potential alternative non-live vaccine candidates due to their high immunogenicity. They mimic the natural conformation of native viral proteins but cannot replicate because they do not contain genomic material which makes them safe. To date, most RV-VLPs have been derived from cell culture adapted strains or common G1 and G3 rotaviruses that have been circulating in communities for some time. In this study, chimaeric RV-VLPs were generated from the consensus sequences of African rotaviruses (G2, G8, G9 or G12 strains associated with either P[4], P[6] or P[8] genotypes) characterised directly from human stool samples without prior adaptation of the wild type strains to cell culture. Codon-optimised sequences for insect cell expression of genome segments 2 (VP2), 4 (VP4), 6 (VP6) and 9 (VP7) were cloned into a modified pFASTBAC vector, which allowed simultaneous expression of up to four genes using the Bac-to-Bac Baculovirus Expression System (BEVS; Invitrogen). Several combinations of the genome segments originating from different field strains were cloned to produce double-layered RV-VLPs (dRV-VLP; VP2/6), triple-layered RV-VLPs (tRV-VLP; VP2/6/7 or VP2/6/7/4) and chimaeric tRV-VLPs. The RV-VLPs were produced by infecting Spodoptera frugiperda 9 and Trichoplusia ni cells with recombinant baculoviruses using multi-cistronic, dual co-infection and stepwise-infection expression strategies. The size and morphology of the RV-VLPs, as determined by transmission electron microscopy, revealed successful production of RV-VLPs. The novel approach of producing tRV-VLPs, by using the consensus insect cell codon-optimised nucleotide sequence derived from dsRNA extracted directly from clinical specimens, should speed-up vaccine research and development by by-passing the need to adapt rotaviruses to cell culture. Other problems associated with cell culture adaptation, such as possible changes in epitopes, can also be circumvented. Thus, it is now possible to generate tRV-VLPs for evaluation as non-live vaccine candidates for any human or animal field rotavirus strain.
    PLoS ONE 09/2014; 9(9):e105167. DOI:10.1371/journal.pone.0105167 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A prospective study was performed to determine the molecular characteristics of rotaviruses circulating among children aged <5 years in Bhutan. Stool samples were collected from February 2010 through January 2011 from children who attended two tertiary care hospitals in the capital Thimphu and the eastern regional headquarters, Mongar. The samples positive for rotavirus was mainly comprised genotype G1, followed by G12 and G9. The VP7 and VP4 genes of all genotypes clustered mainly with those of neighboring countries, thereby indicating that they shared common ancestral strains. The VP7 gene of Bhutanese G1 strains belonged to lineage 1c, which differed from the lineages of vaccine strains. Mutations were also identified in the VP7 gene of G1 strains, which may be responsible for neutralization escape strains. Furthermore, we found that lineage 4 of P[8] genotype differed antigenically from the vaccine strains, and mutations were identified in Bhutanese strains of lineage 3. The distribution of rotavirus genotypes varies among years, therefore further research is required to determine the distribution of rotavirus strain genotypes in Bhutan.
    PLoS ONE 10/2014; 9(10):e110795. DOI:10.1371/journal.pone.0110795 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rotaviruses are the main cause of infantile acute diarrhea, and a monovalent (G1P[8]) vaccine against the virus was introduced into the Brazilian National Immunization Program for all infants in March 2006. The objectives of this study were to determine the rate and genotype distribution of rotavirus causing infantile diarrhea in the Triângulo Mineiro region of Brazil during 2011-2012 and to assess the impact of local vaccination. Fecal specimens were analyzed for detection and characterization of rotavirus using polyacrylamide gel electrophoresis, reverse transcription followed by polymerase chain reaction (PCR), and PCR-genotyping assays. Overall, rotavirus was diagnosed in 1.7% (6/348) of cases. Rotavirus positivity rates decreased 88% [95% confidence intervals (CI)=15.2, 98.3%; P=0.026] in 2011 and 78% (95%CI=30.6, 93.0%; P=0.007) in 2012 when compared with available data for baseline years (2005/2006) in Uberaba. In Uberlândia, reductions of 95.3% (95%CI=66.0, 99.4%; P=0.002) in 2011, and 94.2% (95%CI=56.4, 99.2%; P=0.004) in 2012 were also observed compared with data for 2008. The circulation of rotavirus G2P[4] strains decreased during the period under study, and strains related to the P[8] genotype reemerged in the region. This study showed a marked and sustained reduction of rotavirus-related cases, with a lack of rotavirus in the 2011 and 2012 seasons, suggesting a positive impact of the vaccination program.
    Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica ... [et al.] 09/2014; DOI:10.1590/1414-431X20144156 · 1.08 Impact Factor

Full-text (2 Sources)

Download
12 Downloads
Available from
Sep 17, 2014