Article

The maxillary sinus floor in the oral implantology.

Clinical and Topographical Anatomy Department, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie (Impact Factor: 0.72). 02/2008; 49(4):485-9.
Source: PubMed

ABSTRACT The aim of this study was to establish the mean distances between the maxillary sinus floor and the roots of the lateral maxillary teeth in dentate subjects, respectively the mean height of the available bone for oral implant placement in the corresponding area, in edentulous ones.
We determined the maxillary sinus floor position in relation to morphoclinical alveolodental benchmarks on 50 dry skulls, dentate 30 and edentulous 20, and correlations were performed by use of 40 CT-scans of the targeted area. In addition, 20 human adult cadavers were bilaterally dissected in order to bring topographical evidence at that level.
The data we obtained lead us to define three dentosinusal relations: tangent (close) relation 60.8%; distanced relation 25.6%; penetrating relation: 13.6%; three subantral classes in edentulous patients, emphasizing the direct relation of the age of the edentulism and the degree of bone resorption. We discuss the results we obtained from the viewpoint of their application in the field of oral implantology.
The maxillary sinus floor represents the danger zone for the oral implantology.

Download full-text

Full-text

Available from: Nicoleta Măru, Mar 28, 2014
0 Followers
 · 
268 Views
  • Source
    • "Although the current study did not calculate the amount of bone remaining between sinus floor and root apices, yet it is obvious that the maximum amount of sinus pneumatization around the 2nd molar obtained in our study goes in agreement with the least amount of bone remaining above the 2nd molar in different studies [6] [17] [29] [35]. The inverse relation between sinus pneumatization and remaining alveolar bone is well known and is further strengthened by Nimigean et al. [35]. Their study inferred that the antral floor depends upon the dental scaffold that constitutes the main factor during development and will transform in relation with the normal/pathological status of the dentoperiodontal apparatus, for which they concluded that the available bone is lost from the inferior expansion of the sinus after teeth loss. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Considering the anatomical variability related to the maxillary sinus, its intimate relation to the maxillary posterior teeth and because of all the implications that pneumatization may possess, three-dimensional assessment of maxillary sinus pneumatization is of most usefulness. The aim of this study is to analyze the maxillary sinus dimensions both linearly and volumetrically using cone beam computed tomography (CBCT) to assess the maxillary sinus pneumatization. Retrospective analysis of 30 maxillary sinuses belonging to 15 patients’ CBCT scans was performed. Linear and volumetric measurements were conducted and statistically analyzed. The maximum craniocaudal extension of the maxillary sinus was located around the 2nd molar in 93% of the sinuses, while the maximum mediolateral and antroposterior extensions of the maxillary sinus were located at the level of root of zygomatic complex in 90% of sinuses. There was a high correlation between the linear measurements of the right and left sides, where the antroposterior extension of the sinus at level of the nasal floor had the largest correlation (0.89). There was also a high correlation between the Simplant and geometric derived maxillary sinus volumes for both right and left sides (0.98 and 0.96, respectively). The relations of the sinus floor can be accurately assessed on the different orthogonal images obtained through 3D CBCT scan. The geometric method offered a much cheaper, easier, and less sophisticated substitute; therefore, with the availability of software, 3D volumetric measurements are more facilitated.
    Journal of Advanced Research 05/2014; 5(3):387–395. DOI:10.1016/j.jare.2013.06.006
  • [Show abstract] [Hide abstract]
    ABSTRACT: These cortical and trabecular bones maintain general bone structure. Bone mineral density (BMD) changes according to increasing age, sex, and teeth loss. From previous studies, the evaluation of BMD changes depended on conventional radiographic analysis. This study investigated the trabecular bone ratio (TBR) in maxillary bone samples based on data obtained by micro-computed tomography and estimated variations in BMD according to age, sex, and tooth loss. Thirty-eight specimens were scanned with micro-computed tomography and reconstructed three-dimensionally. Sections were made parallel to the axis of each tooth, and the TBR was measured. Data were statistically analyzed with 1-way analysis of variance and paired t-tests (α=0.05). The TBR differed significantly (P<0.05) in each tooth region in the dentate group but not in the edentulous group. The mean TBR was higher in men than in women. The TBR reduced more with increasing age in the dentate group than in the edentulous group. The TBR varies according to the presence of teeth, sex, and age in specific teeth regions.
    The Journal of craniofacial surgery 03/2011; 22(2):654-8. DOI:10.1097/SCS.0b013e318207b77e · 0.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The edentulous posterior maxilla is considered a clinical challenge during dental implant treatment for many dental practitioners. This is because its insufficient bone quality, deficient alveolar ridge, spiny ridges, undercuts, and sinus pneumatization are often encountered after tooth loss. To overcome these problems, several approaches have been developed and are currently used, including sinus augmentation and bone augmentation. Today, two main procedures of sinus floor elevation for dental implant placement are in use: a two-stage technique using the lateral window approach, and a one-stage technique using a lateral or a crestal approach. In this study, we deal with the anatomic relations of the structures of the maxillary sinus during sinus augmentation. These anatomical findings can help in complications and potential injuries of the maxillary sinus procedures. It can be suggested that pre-operative evaluation is helpful for diagnosis and treatment planning and minimizing complication during the surgery.