Metamaterial Particles for Electromagnetic Energy Harvesting

Applied Physics Letters (Impact Factor: 3.52). 10/2012; 101(17):173903. DOI: 10.1063/1.4764054

ABSTRACT Metamaterials are typically made of an ensemble of electrically small resonators such as metallic loops. The fact that such particles resonate individually to generate a bulk material behavior having enhanced constitutive parameters is essentially indicative of these particles' ability to collect energy. We show that such particles act as energy collectors when a resistive load is inserted within the particle's gap. A proof of concept is provided using a 5.8 GHz field and a split-ring resonator (SRR) as the electromagnetic energy collecting cell. Numerical simulation for a 9 × 9 SRR array shows the effectiveness of an SRR array as an energy collector plate.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The design, fabrication, and measurement of a triple-band metamaterial absorber are presented. The proposed absorber consists of a metallic planar spiral layer and a metallic ground plane separated by a dielectric layer. Experimental results show that the proposed absorber can perform absorption peaks at three resonant frequencies 9.86 GHz, 12.24 GHz, and 15.34 GHz with the absorption of 99.4%, 96.7%, and 99.1%, respectively. In addition, the absorber with the thickness of λ/35 at the lowest fundamental resonant frequency can operate at a wide range of incident angles under both transverse electric and transverse magnetic polarizations.
    Journal of Applied Physics 06/2013; 113(21). DOI:10.1063/1.4809655 · 2.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel electromagnetic energy harvester based on Split Ring Resonators (SRR) is presented. The resonance phenomenon of SRR cells is indicative of their ability to trap electromagnetic energy from an incoming wave. This paper shows that an SRR cell can potentially be used to harvest electromagnetic energy by placing a resistive load across the gap of the resonator. To prove the concept, a prototype of a loaded single loop SRR resonating at 5.8 GHz is simulated, fabricated and tested. We show through numerical simulations that an SRR array can harvest electromagnetic energy effectively across wide range of incident angles.
    2013 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting; 07/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel structure based on electrically small resonators is proposed for harvesting the infrared energy and yielding more than 80% harvesting efficiency. The dispersion effect of the dielectric and conductor materials of the resonators is taken into account by applying the Drude model. A new scheme to channel the infrared waves from an array of split ring resonators is proposed, whereby a wide-bandwidth collector is utilized by employing this new channeling concept.
    Journal of Applied Physics 12/2013; 114(22):223101-223101-6. DOI:10.1063/1.4846076 · 2.19 Impact Factor
Show more