Article

Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection.

Department of Anesthesiology, Box 604, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
Cardiovascular research (Impact Factor: 5.81). 01/2009; 82(2):333-40. DOI: 10.1093/cvr/cvn323
Source: PubMed

ABSTRACT Both mitochondria and nitric oxide (NO*) contribute to cardioprotection by ischaemic preconditioning (IPC). IPC causes mild uncoupling of mitochondria via uncoupling proteins (UCPs) and the adenine nucleotide translocase (ANT), and mild uncoupling per se is cardioprotective. Although electrophilic lipids are known to activate mitochondrial uncoupling, the role of such species in IPC-induced uncoupling and cardioprotection is unclear. We hypothesized that endogenous formation of NO*-derived electrophilic lipids (nitroalkenes such as nitro-linoleate, LNO2) during IPC may stimulate mitochondrial uncoupling via post-translational modification of UCPs and ANT, thus affording cardioprotection.
Hearts from male Sprague-Dawley rats were Langendorff-perfused and subjected to IPC. Nitroalkene formation was measured by HPLC-ESI-MS/MS. The effects of exogenous LNO2 and biotin-tagged LNO2 on isolated heart mitochondria and cardiomyocytes were also investigated.
Nitroalkenes including LNO2 were endogenously generated in mitochondria of IPC hearts. Synthetic LNO2 (<1 microM) activated mild uncoupling, an effect blocked by UCP and ANT inhibitors. LNO2 (<1 microM) also protected cardiomyocytes against simulated ischaemia-reperfusion injury. Biotinylated LNO2 covalently modified ANT thiols and possibly UCP-2. No effects of LNO2 were attributable to NO* release, cGMP signalling, mitochondrial KATP channels, or protective kinase signalling.
Components of a novel signalling pathway are inferred, wherein nitroalkenes formed by IPC-stimulated nitration reactions may induce mild mitochondrial uncoupling via post-translational modification of ANT and UCP-2, subsequently conferring resistance to ischaemia-reperfusion injury.

0 Bookmarks
 · 
52 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extra virgin olive oil (EVOO) and olives, key sources of unsaturated fatty acids in the Mediterranean diet, provide health benefits to humans. Nitric oxide (•NO) and nitrite (NO2 (-))-dependent reactions of unsaturated fatty acids yield electrophilic nitroalkene derivatives (NO2-FA) that manifest salutary pleiotropic cell signaling responses in mammals. Herein, the endogenous presence of NO2-FA in both EVOO and fresh olives was demonstrated by mass spectrometry. The electrophilic nature of these species was affirmed by the detection of significant levels of protein cysteine adducts of nitro-oleic acid (NO2-OA-cysteine) in fresh olives, especially in the peel. Further nitration of EVOO by NO2 (-) under acidic gastric digestive conditions revealed that human consumption of olive lipids will produce additional nitro-conjugated linoleic acid (NO2-cLA) and nitro-oleic acid (NO2-OA). The presence of free and protein-adducted NO2-FA in both mammalian and plant lipids further affirm a role for these species as signaling mediators. Since NO2-FA instigate adaptive anti-inflammatory gene expression and metabolic responses, these redox-derived metabolites may contribute to the cardiovascular benefits associated with the Mediterranean diet.
    PLoS ONE 01/2014; 9(1):e84884. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inorganic nitrite, a metabolite of endogenously-produced nitric oxide (NO) from NO synthases (NOS), provides the largest endocrine source of directly bioavailable NO. The conversion of nitrite to NO occurs mainly through enzymatic reduction, mediated by a range of proteins, including heme-globins, molybdo-flavoproteins, mitochondrial proteins, cytochrome P450 enzymes, and NOS. Such nitrite reduction is particularly favoured under hypoxia, when endogenous formation of NO from NOS is impaired. Under normoxic conditions, the majority of these nitrite reductases also scavenge NO, or diminish its bioavailability via reactive oxygen species (ROS) production, suggesting an intricate balance. Moreover, nitrite, whether produced endogenously, or derived from exogenous nitrite or nitrate administration (including dietary sources via the Nitrate-Nitrite-NO pathway) beneficially modulates many key cardiovascular pathological processes. In this review, we highlight the landmark studies which revealed nitrite's function in biological systems, and inspect its evolving role in cardiovascular protection. While these effects have mainly been ascribed to the activity of one or more nitrite reductases, we also discuss newly-identified mechanisms, including nitrite anhydration, the involvement of s-nitrosothiols, nitro-fatty acids, and direct nitrite normoxic signalling, involving modification of mitochondrial structure and function, and ROS production. This article is part of a Special Issue entitled 'Redox Signalling in Heart'.
    Journal of Molecular and Cellular Cardiology 01/2014; · 5.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background and PurposeCardiac ischaemia–reperfusion (IR) injury remains a significant clinical problem with limited treatment options available. We previously showed that cardioprotection against IR injury by nitro-fatty acids, such as nitro-linoleate (LNO2), involves covalent modification of mitochondrial adenine nucleotide translocase 1 (ANT1). Thus, it was hypothesized that conjugation of LNO2 to the mitochondriotropic triphenylphosphonium (TPP+) moiety would enhance its protective properties.Experimental ApproachTPP+-LNO2 was synthesized from aminopropyl-TPP+ and LNO2, and characterized by direct infusion MS/MS. Its effects were assayed in primary cultures of cardiomyocytes from adult C57BL/6 mice and in mitochondria from these cells, exposed to simulated IR (SIR) conditions (oxygen and metabolite deprivation for 1h followed by normal conditions for 1h) by measuring viability by LDH release and exclusion of Trypan blue. Nitro-alkylated mitochondrial proteins were also measured by Western blots, using antibodies to TPP+.Key ResultsTPP+-LNO2 protected cardiomyocytes from SIR injury more potently than the parent compound LNO2. In addition, TPP+-LNO2 modified mitochondrial proteins, including ANT1, in a manner sensitive to the mitochondrial uncoupler carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP) and the ANT1 inhibitor carboxyatractyloside. Similar protein nitro-alkylation was obtained in cells and in isolated mitochondria, indicating the cell membrane was not a significant barrier to TPP+-LNO2.Conclusions and ImplicationsTogether, these results emphasize the importance of ANT1 as a target for the protective effects of LNO2, and suggest that TPP+-conjugated electrophilic lipid compounds may yield novel tools for the investigation of cardioprotection.Linked ArticlesThis article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8
    British Journal of Pharmacology 04/2014; 171(8). · 5.07 Impact Factor

Full-text (2 Sources)

View
10 Downloads
Available from
May 29, 2014