Article

Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection.

Department of Anesthesiology, Box 604, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
Cardiovascular Research (Impact Factor: 5.81). 01/2009; 82(2):333-40. DOI: 10.1093/cvr/cvn323
Source: PubMed

ABSTRACT Both mitochondria and nitric oxide (NO*) contribute to cardioprotection by ischaemic preconditioning (IPC). IPC causes mild uncoupling of mitochondria via uncoupling proteins (UCPs) and the adenine nucleotide translocase (ANT), and mild uncoupling per se is cardioprotective. Although electrophilic lipids are known to activate mitochondrial uncoupling, the role of such species in IPC-induced uncoupling and cardioprotection is unclear. We hypothesized that endogenous formation of NO*-derived electrophilic lipids (nitroalkenes such as nitro-linoleate, LNO2) during IPC may stimulate mitochondrial uncoupling via post-translational modification of UCPs and ANT, thus affording cardioprotection.
Hearts from male Sprague-Dawley rats were Langendorff-perfused and subjected to IPC. Nitroalkene formation was measured by HPLC-ESI-MS/MS. The effects of exogenous LNO2 and biotin-tagged LNO2 on isolated heart mitochondria and cardiomyocytes were also investigated.
Nitroalkenes including LNO2 were endogenously generated in mitochondria of IPC hearts. Synthetic LNO2 (<1 microM) activated mild uncoupling, an effect blocked by UCP and ANT inhibitors. LNO2 (<1 microM) also protected cardiomyocytes against simulated ischaemia-reperfusion injury. Biotinylated LNO2 covalently modified ANT thiols and possibly UCP-2. No effects of LNO2 were attributable to NO* release, cGMP signalling, mitochondrial KATP channels, or protective kinase signalling.
Components of a novel signalling pathway are inferred, wherein nitroalkenes formed by IPC-stimulated nitration reactions may induce mild mitochondrial uncoupling via post-translational modification of ANT and UCP-2, subsequently conferring resistance to ischaemia-reperfusion injury.

0 Followers
 · 
188 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria fulfill a number of biological functions which inherently depend on ATP and O2(-•)/H2O2 production. Both ATP and O2(-•)/H2O2 are generated by electron transfer reactions. ATP is the product of oxidative phosphorylation whereas O2(-•) is generated by singlet electron reduction of di-oxygen (O2). O2(-•) is then rapidly dismutated by superoxide dismutase (SOD) producing H2O2. O2(-•)/H2O2 were once viewed as unfortunately by-products of aerobic respiration. This characterization is fitting considering over production of O2(-•)/H2O2 by mitochondria is associated with range of pathological conditions and aging. However, O2(-•)/H2O2 are only dangerous in large quantities. If produced in a controlled fashion and maintained at a low concentration, cells can benefit greatly from the redox properties of O2(-•)/H2O2. Indeed, low rates of O2(-•)/H2O2 production are required for intrinsic mitochondrial signaling (e.g. modulation of mitochondrial processes) and communication with the rest of the cell. O2(-•)/H2O2 levels are kept in check by anti-oxidant defense systems that sequester O2(-•)/H2O2 with extreme efficiency. Given the importance of O2(-•)/H2O2 in cellular function, it is imperative to consider how mitochondria produce O2(-•)/H2O2 and how O2(-•)/H2O2 genesis is regulated in conjunction with fluctuations in nutritional and redox states. Here, I discuss the fundamentals of electron transfer reactions in mitochondria and emerging knowledge on the 11 potential sources of mitochondrial O2(-•)/H2O2 in tandem with their significance in contributing to overall O2(-•)/H2O2 emission in health and disease. The potential for classifying these different sites in isopotential groups, which is essentially defined by the redox properties of electron donator involved in O2(-•)/H2O2 production, as originally suggested by Brand and colleagues is also surveyed in detail. In addition, redox signaling mechanisms that control O2(-•)/H2O2 genesis from these sites are discussed. Finally, the current methodologies utilized for measuring O2(-•)/H2O2 in isolated mitochondria, cell culture and in vivo are reviewed. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.
    02/2015; 141. DOI:10.1016/j.redox.2015.02.001
  • Source
    Free Radical Biology and Medicine 11/2013; 65:S3. DOI:10.1016/j.freeradbiomed.2013.10.396 · 5.71 Impact Factor
  • Source
    Nitric Oxide 11/2014; 42C:105. DOI:10.1016/j.niox.2014.09.023 · 3.18 Impact Factor