Article

The effect of high-intensity aerobic interval training on postinfarction left ventricular remodelling.

Centre for Sports Medicine and Human Performance, School of Sport and Education, Brunel University, Uxbridge, UK.
Case Reports 02/2013; 2013. DOI: 10.1136/bcr-2012-007668
Source: PubMed

ABSTRACT This is the third in a series of case studies on an individual with normal coronaries who sustained an idiopathic acute myocardial infarction . Bilateral pulmonary emboli almost 2 years post-myocardial infarction (MI) revealed coagulopathy as the cause. The original MI resulted in 16% myocardial scar tissue. An increasing number of patients are surviving MI, hence the burden for healthcare often shifts to heart failure. Accumulating evidence suggests high-intensity aerobic interval exercise (AHIT) is efficacious in improving cardiac function in health and disease. However, its impact on MI scar has never been assessed. Accordingly, the 50-year-old subject of this case study undertook 60 weeks of regular AHIT. Successive cardiac MRI results demonstrate, for the first time, a decrease in MI scar with exercise and, alongside mounting evidence of high efficacy and low risk, suggests AHIT may be increasingly important in future prevention and reversing of disease and or amelioration of symptoms.

Full-text

Available from: R.J. Godfrey, Jun 12, 2015
1 Follower
 · 
357 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exercise training fosters the health and performance of the cardiovascular system, and represents nowadays a powerful tool for cardiovascular therapy. Exercise exerts its beneficial effects through reducing cardiovascular risk factors, and directly affecting the cellular and molecular remodelling of the heart. Traditionally, moderate endurance exercise training has been viewed to determine a balanced and revertible physiological growth, through cardiomyocyte hypertrophy accompanied by appropriate neoangiogenesis (the Athlete's Heart). These cellular adaptations are due to the activation of signalling pathways and in particular, the IGF-1/IGF-1R/Akt axis appears to have a major role. Recently, it has been shown that physical exercise determines cardiac growth also through new cardiomyocyte formation. Accordingly, burgeoning evidence indicates that exercise training activates circulating, as well as resident tissue-specific cardiac, stem/progenitor cells. Dissecting the mechanisms for stem/progenitor cell activation with exercise will be instrumental to devise new effective therapies, encompassing myocardial regeneration for a large spectrum of cardiovascular diseases.
    Heart (British Cardiac Society) 08/2011; 98(1):5-10. DOI:10.1136/heartjnl-2011-300639 · 6.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We studied physical fitness and risk of all-cause and cause-specific mortality in 10,224 men and 3120 women who were given a preventive medical examination. Physical fitness was measured by a maximal treadmill exercise test. Average follow-up was slightly more than 8 years, for a total of 110,482 person-years of observation. There were 240 deaths in men and 43 deaths in women. Age-adjusted all-cause mortality rates declined across physical fitness quintiles from 64.0 per 10,000 person-years in the least-fit men to 18.6 per 10,000 person-years in the most-fit men (slope, -4.5). Corresponding values for women were 39.5 per 10,000 person-years to 8.5 per 10,000 person-years (slope, -5.5). These trends remained after statistical adjustment for age, smoking habit, cholesterol level, systolic blood pressure, fasting blood glucose level, parental history of coronary heart disease, and follow-up interval. Lower mortality rates in higher fitness categories also were seen for cardiovascular disease and cancer of combined sites. Attributable risk estimates for all-cause mortality indicated that low physical fitness was an important risk factor in both men and women. Higher levels of physical fitness appear to delay all-cause mortality primarily due to lowered rates of cardiovascular disease and cancer.
    JAMA The Journal of the American Medical Association 12/1989; 262(17):2395-401. DOI:10.1001/jama.1989.03430170057028 · 30.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: L6E9 rat myoblasts derived from the L6 cell line can be induced to differentiate to a very high percentage by manipulating the culture conditions. Under standard differentiating conditions, L6E9 cells divide an average of 2.5 times before differentiating and >99% of them incorporate 3H-TdR before fusing. By inhibiting DNA replication by a variety of means, data have been obtained which demonstrate that this DNa synthesis is not required to switch from growth to differentiation. After every cell division, L6E9 cells have the option either to fuse or to proliferate without intervening DNA synthesis.Cell cloning and DNA labeling experiments show a direct correlation between the time of culture in differentiating medium and a progressive loss of proliferative capacity of mononucleated L6E9 cells, demonstrating that these cells become irreversibly committed to differentiation and withdraw from the cell cycle prior to and not as a consequence of cell fusion. The commitment step occurs during the G1 phase prior to fusion. This G1 phase has a latent period during which no irreversible step toward differentiation occurs and the cells remain ambivalent toward growth or differentiation. Under proper conditions, this period is followed by an irreversible commitment toward differentiation and a loss of proliferative capacity. The kinetics of this commitment step strongly suggest that L6E9 cells become irreversibly committed in a stochastic manner. Once the cells have become committed, with or without DNA synthesis, they will fuse to form myotubes and biochemically differentiate in a deterministic fashion.The data presented are consistent with a stochastic model of differentiation for L6E9 cells and demonstrate that the switch from a proliferating to a differentiating genetic program can occur in the absence of DNA synthesis.
    Cell 12/1978; 15(3):855-64. DOI:10.1016/0092-8674(78)90270-2 · 33.12 Impact Factor