Article

Physiological release of endogenous tau is stimulated by neuronal activity

Department of Neuroscience (PO37), King's College London, Institute of Psychiatry, London SE5 8AF, UK.
EMBO Reports (Impact Factor: 7.86). 02/2013; 14(4). DOI: 10.1038/embor.2013.15
Source: PubMed

ABSTRACT Propagation of tau pathology is linked with progressive neurodegeneration, but the mechanism underlying trans-synaptic spread of tau is unknown. We show that stimulation of neuronal activity, or AMPA receptor activation, induces tau release from healthy, mature cortical neurons. Notably, phosphorylation of extracellular tau appears reduced in comparison with intracellular tau. We also find that AMPA-induced release of tau is calcium-dependent. Blocking pre-synaptic vesicle release by tetanus toxin and inhibiting neuronal activity with tetrodotoxin both significantly impair AMPA-mediated tau release. Tau secretion is therefore a regulatable process, dysregulation of which could lead to the spread of tau pathology in disease.

Download full-text

Full-text

Available from: Diane Hanger, Jul 02, 2015
2 Followers
 · 
174 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A growing body of evidence supports the application of the neurochemical dementia diagnostics (NDD) biomarkers for the diagnosis of dementing conditions. Biomarkers of Alzheimer's disease (AD) were recently classified as these reflecting amyloid β pathology (decreased CSF concentrations of Aβ42 and/or positive Aβ PET scan) and these reflecting neurodegeneration (increased CSF Tau concentrations, decreased uptake of FDG on FDG-PET, and cerebral atrophy on structural MRI). Particularly important seems the role of the biomarkers in the early diagnosis of AD, as the first pathophysiologic events observable in the CSF and amyloid β-PET occur years and perhaps decades before the onset of the earliest clinical symptoms. Therefore, the NDD tools enable the diagnosis of AD already in the early preclinical stage. This review summarizes pathophysiology underlying the CSF biomarkers, following a discussion of their role in the current guidelines for the diagnostic procedures. Copyright © 2014 Medical University of Bialystok. All rights reserved.
    Advances in Medical Sciences 12/2014; 60(1):76-82. DOI:10.1016/j.advms.2014.11.002 · 0.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The microtubule-associated protein (MAP) tau plays a critical role in the pathogenesis of Alzheimer's disease (AD) and several related disorders collectively known as tauopathies. Development of tau pathology is associated with progressive neuronal loss and cognitive decline. In the brains of AD patients, tau pathology spreads following an anatomically defined pattern. Mounting evidence strongly suggests that accumulation of abnormal tau is mediated through spreading of seeds of the protein from cell to cell and point at the involvement of extracellular tau species as the main agent in the interneuronal propagation of neurofibrillary lesions and spreading of tau toxicity throughout different brain regions in these disorders. That would support the concept that pathology initiates in a very small part of the brain many years before becoming symptomatic, spreading progressively to the whole brain within 10-20 years. Understanding the precise molecular mechanism underlying tau propagation is crucial for the development of therapeutics for this devastating disorder. In this work, we will discuss recent research on the role of extracellular tau in the spreading of tau pathology, through synaptic and non-synaptic mechanisms.
    Frontiers in Cellular Neuroscience 04/2014; 8:113. DOI:10.3389/fncel.2014.00113 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tau has a well-established role as a microtubule-associated protein, in which it stabilizes the neuronal cytoskeleton. This function of tau is influenced by tau phosphorylation state, which is significantly increased in Alzheimer's disease and related tauopathies. Disruptions to the cytoskeleton in disease-affected neurons include reduced length and numbers of stable microtubules, and their diminished stability is associated with increased tau phosphorylation in disease. Tau is also localized in the nucleus and plasma membrane of neurons, where it could have roles in DNA repair and cell signaling. Most recently, potential roles for extracellular tau have been highlighted. The release of tau from neurons is a physiological process that can be regulated by neuronal activity and extracellular tau may play a role in inter-neuronal signaling. In addition, recent studies have suggested that the misfolding of tau in diseased brain leads to abnormal conformations of tau that can be taken up by neighboring neurons. Such a mechanism may be responsible for the apparent prion-like spreading of tau pathology through the brain, which occurs in parallel with clinical progression in the tauopathies. The relationship between tau localization in neurons, tau release, and tau uptake remains to be established, as does the function of extracellular tau. More research is needed to identify disease mechanisms that drive the release and propagation of pathogenic tau and to determine the impact of extracellular tau on cognitive decline in neurodegenerative disease.
    Journal of Alzheimer's disease: JAD 03/2014; 40. DOI:10.3233/JAD-132054 · 3.61 Impact Factor