The regulation of allogeneic human cells and tissue products as biomaterials.

Joint Graduate School of Tokyo Women's Medical University and Waseda University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-866, Japan. Electronic address: .
Biomaterials (Impact Factor: 8.31). 04/2013; 34(13):3165-73. DOI: 10.1016/j.biomaterials.2013.01.048
Source: PubMed

ABSTRACT The current definition of biomaterials differs vastly from it of just a decade ago. According to advancing technologies, it encompasses unpredictable materials such as engineered human cells and tissue. These biomaterials also have to be approved to use in health care business by regulatory authority, which are defined as drug, medical device, or biologics in the regulation. This Leading Opinion Paper addresses the regulatory issues of engineered human cells and tissue products using allogeneic cells that should have a great possibility to develop therapeutics for life-threating diseases or orphan diseases. Six allogeneic human cells and tissue products derived from neonatal or infant fibroblasts and/or keratinocytes were approved as medical devices or biologics in the United States as well as a hematopoietic cell product. For five of the seven products, well-controlled comparative clinical trials were conducted as pre-approval evaluation followed by post-approval evaluation. Although these products avoid a sterilization process usually used for medical devices, no serious malfunction that would lead to class 1 recall was reported. This article would provide insight for development of the engineered human cells and tissue.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Substantial progress made in the areas of stem cell research and regenerative medicine has provided a number of innovative methods to repair or regenerate defective tissues and organs. Although previous studies regarding regenerative medicine, especially those involving induced pluripotent stem cells, have been actively promoted in the past decade, there remain some challenges that need to be addressed in order to enable clinical applications. Designed for use in clinical applications, cell sheet engineering has been developed as a unique, scaffold-free method of cell processing utilizing temperature-responsive cell culture vessels. Clinical studies using cell sheets have shown positive outcomes and will be translated into clinical practice in the near future. However, several challenges stand in the way of the industrialization of cell sheet products and the widespread acceptance of regenerative medicine based on cell sheet engineering. This review describes current strategies geared towards the realization of the regenerative medicine approach.
    Biotechnology Journal 06/2014; · 3.71 Impact Factor