In vitro fermentation of carbohydrates by porcine fecal inocula and their influence on Salmonella Typhimurium growth in batch culture systems

Animal Nutrition, Management and Welfare Research Group, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
FEMS Microbiology Ecology (Impact Factor: 3.57). 01/2009; 66(3):608-19. DOI: 10.1111/j.1574-6941.2008.00610.x
Source: PubMed


The aim of this study was to evaluate in vitro the influence of fermentable carbohydrates on the activity of porcine microbiota and survival of Salmonella Typhimurium in a batch culture system simulating the porcine hindgut. The carbohydrates tested were xylooligosaccharides, a mixture of fructooligosaccharides/inulin (FIN), fructooligosaccharides (FOS), gentiooligosaccharides (GEO) and lactulose (LAC). These ingredients stimulated the growth of selected Bifidobacterium and Lactobacillus species in pure cultures. In batch cultures, the carbohydrates influenced some fermentation parameters. For example, GEO and FIN significantly increased lactic acids compared with the control (no added carbohydrate). With the exception of LAC, the test carbohydrates increased the production of short-chain fatty acid (SCFA) and modified SCFA profiles. Quantitative analysis of bacterial populations by FISH revealed increased counts of the Bifidobacterium group compared with control and, with exception of FOS, increased Lactobacillus, Leuconostoc and Weissella spp. counts. Salmonella numbers were the lowest during the fermentation of LAC. This work has looked at carbohydrate metabolism by porcine microbiota in a pH-controlled batch fermentation system. It provides an initial model to analyse interactions with pathogens.

Download full-text


Available from: Martin John Woodward, Sep 18, 2014
63 Reads
  • Source
    • "Enumeration of bacterial populations was performed by FISH using synthetic oligonucleotide probes designed to target specific diagnostic regions of 16S rRNA and labelled with the fluorescent Cy3 dye (Sigma Aldrich Ltd., Poole, Dorset, UK), as previously described [40]. As detailed in Table 1, probes were used for the determination of total bacteria, bifidobacteria, lactobacilli/enterococci, Bacteroides, Clostridium perfringens/histolyticum subgroup, Clostridium cluster XIVa, Clostridium cluster I and II, Roseburia genus and Atopobium - Coriobacterium. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Wheat dextrin soluble fibre may have metabolic and health benefits, potentially acting via mechanisms governed by the selective modulation of the human gut microbiota. Our aim was to examine the impact of wheat dextrin on the composition and metabolic activity of the gut microbiota. We used a validated in vitro three-stage continuous culture human colonic model (gut model) system comprised of vessels simulating anatomical regions of the human colon. To mimic human ingestion, 7 g of wheat dextrin (NUTRIOSE(®) FB06) was administered to three gut models, twice daily at 10.00 and 15.00, for a total of 18 days. Samples were collected and analysed for microbial composition and organic acid concentrations by 16S rRNA-based fluorescence in situ hybridisation and gas chromatography approaches, respectively. Wheat dextrin mediated a significant increase in total bacteria in vessels simulating the transverse and distal colon, and a significant increase in key butyrate-producing bacteria Clostridium cluster XIVa and Roseburia genus in all vessels of the gut model. The production of principal short-chain fatty acids, acetate, propionate and butyrate, which have been purported to have protective, trophic and metabolic host benefits, were increased. Specifically, wheat dextrin fermentation had a significant butyrogenic effect in all vessels of the gut model and significantly increased production of acetate (vessels 2 and 3) and propionate (vessel 3), simulating the transverse and distal regions of the human colon, respectively. In conclusion, wheat dextrin NUTRIOSE(®) FB06 is selectively fermented in vitro by Clostridium cluster XIVa and Roseburia genus and beneficially alters the metabolic profile of the human gut microbiota.
    PLoS ONE 10/2013; 8(10):e77128. DOI:10.1371/journal.pone.0077128 · 3.23 Impact Factor
  • Source
    • "Numbers of 12 main intestinal bacterial groups, as well as total bacterial populations, were evaluated in samples from the colonic model system by FISH analysis, as previously described by Martin-Pelaez and colleagues [24]. The probes used are reported in Table 2 and were commercially synthesized and 5 -labeled with the fluorescent Cy3 dye (Sigma-Aldrich, St. Louis, MO, USA). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibers and prebiotics represent a useful dietary approach for modulating the human gut microbiome. Therefore, aim of the present study was to investigate the impact of four flours (wholegrain rye, wholegrain wheat, chickpeas and lentils 50:50, and barley milled grains), characterized by a naturally high content in dietary fibers, on the intestinal microbiota composition and metabolomic output. A validated three-stage continuous fermentative system simulating the human colon was used to resemble the complexity and diversity of the intestinal microbiota. Fluorescence in situ hybridization was used to evaluate the impact of the flours on the composition of the microbiota, while small-molecule metabolome was assessed by NMR analysis followed by multivariate pattern recognition techniques. HT29 cell-growth curve assay was used to evaluate the modulatory properties of the bacterial metabolites on the growth of intestinal epithelial cells. All the four flours showed positive modulations of the microbiota composition and metabolic activity. Furthermore, none of the flours influenced the growth-modulatory potential of the metabolites toward HT29 cells. Our findings support the utilization of the tested ingredients in the development of a variety of potentially prebiotic food products aimed at improving gastrointestinal health.
    Molecular Nutrition & Food Research 08/2012; 56(8):1342-52. DOI:10.1002/mnfr.201200046 · 4.60 Impact Factor
  • Source
    • "The details of probes used in this study and hybridisation conditions are in Table 2. The FISH procedure was conducted as by Martìn-Peláez et al., 2008 [32]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Prebiotics are food ingredients, usually non-digestible oligosaccharides, that are selectively fermented by populations of beneficial gut bacteria. Endoxylanases, altering the naturally present cereal arabinoxylans, are commonly used in the bread industry to improve dough and bread characteristics. Recently, an in situ method has been developed to produce arabinoxylan-oligosaccharides (AXOS) at high levels in breads through the use of a thermophilic endoxylanase. AXOS have demonstrated potentially prebiotic properties in that they have been observed to lead to beneficial shifts in the microbiota in vitro and in murine, poultry and human studies. Methods A double-blind, placebo controlled human intervention study was undertaken with 40 healthy adult volunteers to assess the impact of consumption of breads with in situ produced AXOS (containing 2.2 g AXOS) compared to non-endoxylanase treated breads. Volatile fatty acid concentrations in faeces were assessed and fluorescence in situ hybridisation was used to assess changes in gut microbial groups. Secretory immunoglobulin A (sIgA) levels in saliva were also measured. Results Consumption of AXOS-enriched breads led to increased faecal butyrate and a trend for reduced iso-valerate and fatty acids associated with protein fermentation. Faecal levels of bifidobacteria increased following initial control breads and remained elevated throughout the study. Lactobacilli levels were elevated following both placebo and AXOS-breads. No changes in salivary secretory IgA levels were observed during the study. Furthermore, no adverse effects on gastrointestinal symptoms were reported during AXOS-bread intake. Conclusions AXOS-breads led to a potentially beneficial shift in fermentation end products and are well tolerated.
    Nutrition Journal 06/2012; 11(1):36. DOI:10.1186/1475-2891-11-36 · 2.60 Impact Factor
Show more