Autophagy Induction Is a Tor- and Tp53-Independent Cell Survival Response in a Zebrafish Model of Disrupted Ribosome Biogenesis

Department of Surgery, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia.
PLoS Genetics (Impact Factor: 7.53). 02/2013; 9(2):e1003279. DOI: 10.1371/journal.pgen.1003279
Source: PubMed


Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a novel zebrafish mutant, titania (tti(s450)), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature 18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In tti(s450), the growth of the endodermal organs, eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells to evade cell death. Inhibiting autophagy in tti(s450) larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy induction in tti(s450) larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae. These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts, these treatments may promote autophagy and contribute to cancer cells evading cell death.

Download full-text


Available from: Ross Hannan,

Click to see the full-text of:

Article: Autophagy Induction Is a Tor- and Tp53-Independent Cell Survival Response in a Zebrafish Model of Disrupted Ribosome Biogenesis

8.08 MB

See full-text
  • Source
    • "Recently, Boglev et al reported that autophagy is a survival mechanism involved in ribosomal stress [32]. In the ttis450 mutant, which has a similar phenotype to our mutant, autophagy is up-regulated. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribosome biogenesis is an important biological process for proper cellular function and development. Defects leading to improper ribosome biogenesis can cause diseases such as Diamond-Blackfan anemia and Shwachman-Bodian-Diamond syndrome. Nucleolar proteins are a large family of proteins and are involved in many cellular processes, including the regulation of ribosome biogenesis. Through a forward genetic screen and positional cloning, we identified and characterized a zebrafish line carrying mutation in nucleolar protein with MIF4G domain 1 (nom1), which encodes a conserved nulceolar protein with a role in pre-rRNA processing. Zebrafish nom1 mutants exhibit major defects in endoderm development, especially in exocrine pancreas. Further studies revealed that impaired proliferation of ptf1a-expressing pancreatic progenitor cells mainly contributed to the phenotype. RNA-seq and molecular analysis showed that ribosome biogenesis and pre-mRNA splicing were both affected in the mutant embryos. Several defects of ribosome assembly have been shown to have a p53-dependent mechanism. In the nom1 mutant, loss of p53 did not rescue the pancreatic defect, suggesting a p53-independent role. Further studies indicate that protein phosphatase 1 alpha, an interacting protein to Nom1, could partially rescue the pancreatic defect in nom1 morphants if a human nucleolar localization signal sequence was artificially added. This suggests that targeting Pp1α into the nucleolus by Nom1 is important for pancreatic proliferation. Altogether, our studies revealed a new mechanism involving Nom1 in controlling vertebrate exocrine pancreas formation.
    PLoS ONE 06/2014; 9(6):e100796. DOI:10.1371/journal.pone.0100796 · 3.23 Impact Factor
  • Source
    • "The relevance of these studies was further enhanced by the fact that xenografted embryos can be easily exposed to existing chemical libraries, thus they provide a practical resource for early-phase drug trials. Although neglected by autophagy researchers for a long time, recently the role of autophagy in fish development and cellular homeostasis has also been addressed [44] [45]. These studies, unsurprisingly, revealed that zebrafish larvae , when exposed to the usual set of autophagy modulators, show the expected changes in the level of autophagic activity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy, a highly regulated self-degradation process of eukaryotic cells, is a context-dependent tumor-suppressing mechanism that can also promote tumor cell survival upon stress and treatment resistance. Because of this ambiguity, autophagy is considered as a double-edged sword in oncology, making anti-cancer therapeutic approaches highly challenging. In this review, we present how systems-level knowledge on autophagy regulation can help to develop new strategies and efficiently select novel anti-cancer drug targets. We focus on the protein interactors and transcriptional/post-transcriptional regulators of autophagy as the protein and regulatory networks significantly influence the activity of core autophagy proteins during tumor progression. We list several network resources to identify interactors and regulators of autophagy proteins. As in silico analysis of such networks often necessitates experimental validation, we briefly summarize tractable model organisms to examine the role of autophagy in cancer. We also discuss fluorescence techniques for high-throughput monitoring of autophagy in humans. Finally, the challenges of pharmacological modulation of autophagy are reviewed. We suggest network-based concepts to overcome these difficulties. We point out that a context-dependent modulation of autophagy would be favored in anti-cancer therapy, where autophagy is stimulated in normal cells, while inhibited only in stressed cancer cells. To achieve this goal, we introduce the concept of regulo-network drugs targeting specific transcription factors or miRNA families identified with network analysis. The effect of regulo-network drugs propagates indirectly through transcriptional or post-transcriptional regulation of autophagy proteins, and, as a multi-directional intervention tool, they can both activate and inhibit specific proteins in the same time. The future identification and validation of such regulo-network drug targets may serve as novel intervention points, where autophagy can be effectively modulated in cancer therapy.
    Seminars in Cancer Biology 06/2013; 23(4). DOI:10.1016/j.semcancer.2013.06.009 · 9.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy, an ancient and highly conserved intracellular degradation process, is viewed as a critical component of innate immunity because of its ability to deliver cytosolic bacteria to the lysosome. However, the role of bacterial autophagy in vivo remains poorly understood. The zebrafish (Danio rerio) has emerged as a vertebrate model for the study of infections because it is optically accessible at the larval stages when the innate immune system is already functional. Here, we have characterized the susceptibility of zebrafish larvae to Shigella flexneri, a paradigm for bacterial autophagy, and have used this model to study Shigella-phagocyte interactions in vivo. Depending on the dose, S. flexneri injected in zebrafish larvae were either cleared in a few days or resulted in a progressive and ultimately fatal infection. Using high resolution live imaging, we found that S. flexneri were rapidly engulfed by macrophages and neutrophils; moreover we discovered a scavenger role for neutrophils in eliminating infected dead macrophages and non-immune cell types that failed to control Shigella infection. We observed that intracellular S. flexneri could escape to the cytosol, induce septin caging and be targeted to autophagy in vivo. Depletion of p62 (sequestosome 1 or SQSTM1), an adaptor protein critical for bacterial autophagy in vitro, significantly increased bacterial burden and host susceptibility to infection. These results show the zebrafish larva as a new model for the study of S. flexneri interaction with phagocytes, and the manipulation of autophagy for anti-bacterial therapy in vivo.
    PLoS Pathogens 09/2013; 9(9):e1003588. DOI:10.1371/journal.ppat.1003588 · 7.56 Impact Factor
Show more