Article

Site- and strand-specific nicking of DNA by fusion proteins derived from MutH and I-SceI or TALE repeats

Institute for Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
Nucleic Acids Research (Impact Factor: 8.81). 02/2013; 41(7). DOI: 10.1093/nar/gkt080
Source: PubMed

ABSTRACT Targeted genome engineering requires nucleases that introduce a highly specific double-strand break in the genome that is either processed by homology-directed repair in the presence of a homologous repair template or by non-homologous end-joining (NHEJ) that usually results in insertions or deletions. The error-prone NHEJ can be efficiently suppressed by 'nickases' that produce a single-strand break rather than a double-strand break. Highly specific nickases have been produced by engineering of homing endonucleases and more recently by modifying zinc finger nucleases (ZFNs) composed of a zinc finger array and the catalytic domain of the restriction endonuclease FokI. These ZF-nickases work as heterodimers in which one subunit has a catalytically inactive FokI domain. We present two different approaches to engineer highly specific nickases; both rely on the sequence-specific nicking activity of the DNA mismatch repair endonuclease MutH which we fused to a DNA-binding module, either a catalytically inactive variant of the homing endonuclease I-SceI or the DNA-binding domain of the TALE protein AvrBs4. The fusion proteins nick strand specifically a bipartite recognition sequence consisting of the MutH and the I-SceI or TALE recognition sequences, respectively, with a more than 1000-fold preference over a stand-alone MutH site. TALE-MutH is a programmable nickase.

0 Followers
 · 
160 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies of the Cas9/sgRNA system in Drosophila melanogaster genome editing have opened new opportunities to generate site-specific mutant collections in a high-throughput manner. However, off-target effects of the system are still a major concern when analyzing mutant phenotypes. Mutations converting Cas9 to a DNA nickase have great potential for reducing off-target effects in vitro. Here, we demonstrated that injection of two plasmids encoding neighboring offset sgRNAs into transgenic Cas9(D10A) nickase flies efficiently produces heritable indel mutants. We then determined the effective distance between the two sgRNA targets and their orientations that affected the ability of the sgRNA pairs to generate mutations when expressed in the transgenic nickase flies. Interestingly, Cas9 nickase greatly reduces the ability to generate mutants with one sgRNA, suggesting that the application of Cas9 nickase and sgRNA pairs can almost avoid off-target effects when generating indel mutants. Finally, a defined piwi mutant allele is generated with this system through homology-directed repair. However, Cas9(D10A) is not as effective as Cas9 in replacing entire coding sequence of piwi with two sgRNAs.
    G3-Genes Genomes Genetics 08/2014; DOI:10.1534/g3.114.013821 · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcription activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria to aid the infection of plant species. TALEs assist infections by binding to specific DNA sequences and activating the expression of host genes. Recent results show that TALE proteins consist of a central repeat domain, which determines the DNA targeting specificity and can be rapidly synthesized de novo. Considering the highly modular nature of TALEs, their versatility, and the ease of constructing these proteins, this technology can have important implications for synthetic biology applications. Here, we review developments in the area with a particular focus on modifications for custom and controllable gene regulation.
    ACS Synthetic Biology 02/2014; 3(10). DOI:10.1021/sb400137b · 3.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene therapy by engineered nucleases is a genetic intervention being investigated for curing the hereditary disorders by targeting selected genes with specific nucleotides for establishment, suppression, abolishment of a function or correction of mutation. Here, we review the fast developing technology of targeted genome engineering using site specific programmable nucleases; zinc finger nucleases (ZFNs), transcription activator like nucleases (TALENs) and cluster regulatory interspaced short palindromic repeat/CRISPR associated proteins (CRISPR/Cas) based RNA-guided DNA endonuclease (RGENs) and their different characteristics including pros and cons of genome modifications by these nucleases. We have further discussed different types of delivery methods to induce gene editing, novel development in genetic engineering other than nucleases and future prospects. Copyright © 2014. Published by Elsevier B.V.
    Journal of Controlled Release 12/2014; 205. DOI:10.1016/j.jconrel.2014.12.036 · 7.26 Impact Factor

Preview (2 Sources)

Download
1 Download
Available from

Peter Friedhoff