Differentiation of mesenchymal stem cells to osteoblasts and chondrocytes: a focus on adenosine receptors.

Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
Expert Reviews in Molecular Medicine (Impact Factor: 5.91). 01/2013; 15:e1. DOI: 10.1017/erm.2013.2
Source: PubMed

ABSTRACT Skeletogenesis, either during development, post-injury or for maintenance, is a carefully coordinated process reliant on the appropriate differentiation of mesenchymal stem cells. Some well described, as well as a new regulator of this process (adenosine receptors), are alike in that they signal via cyclic-AMP (cAMP). This review highlights the known contribution of cAMP signalling to mesenchymal stem cell differentiation to osteoblasts and to chondrocytes. Focus has been given to how these regulators influence the commitment of the osteochondroprogenitor to these separate lineages.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Osteoarthritis (OA) is a multi-factorial disease leading progressively to loss of articular cartilage and subsequently to loss of joint function. While hypertrophy of chondrocytes is a physiological process implicated in the longitudinal growth of long bones, hypertrophy-like alterations in chondrocytes play a major role in OA. We performed a quantitative proteomic analysis in osteoarthritic and normal chondrocytes followed by functional analyses to investigate proteome changes and molecular pathways involved in OA pathogenesis. Methods Chondrocytes were isolated from articular cartilage of ten patients with primary OA undergoing knee replacement surgery and six normal donors undergoing fracture repair surgery without history of joint disease and no OA clinical manifestations. We analyzed the proteome of chondrocytes using high resolution mass spectrometry and quantified it by label-free quantification and western blot analysis. We also used WebGestalt, a web-based enrichment tool for the functional annotation and pathway analysis of the differentially synthesized proteins, using the Wikipathways database. ClueGO, a Cytoscape plug-in, is also used to compare groups of proteins and to visualize the functionally organized Gene Ontology (GO) terms and pathways in the form of dynamical network structures. Results The proteomic analysis led to the identification of a total of ~2400 proteins. 269 of them showed differential synthesis levels between the two groups. Using functional annotation, we found that proteins belonging to pathways associated with regulation of the actin cytoskeleton, EGF/EGFR, TGF-β, MAPK signaling, integrin-mediated cell adhesion, and lipid metabolism were significantly enriched in the OA samples (p ≤10−5). We also observed that the proteins GSTP1, PLS3, MYOF, HSD17B12, PRDX2, APCS, PLA2G2A SERPINH1/HSP47 and MVP, show distinct synthesis levels, characteristic for OA or control chondrocytes. Conclusion In this study we compared the quantitative changes in proteins synthesized in osteoarthritic compared to normal chondrocytes. We identified several pathways and proteins to be associated with OA chondrocytes. This study provides evidence for further testing on the molecular mechanism of the disease and also propose proteins as candidate markers of OA chondrocyte phenotype.
    Clinical Proteomics 04/2015; 12(1-1). DOI:10.1186/s12014-015-9085-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteoporosis is well known to be a poly-factorial skeletal disorder characterized by a low bone mineral density (BMD) at which the risk of developing fracture is remarkably increased and affecting both the quality and quantity of life. Although it is nearly 180 years, since its first pathological identification, there is no effective cure against such aging-associated health concern. Traditional research direction on osteoporosis was mainly focused on the balance between bone formation and resorption, in which osteoblast and osteoclast physiology as well as a variety of relevant molecular factors underlying bone homeostasis have been intensively studied. Due to the knowledge advances in the field, more potential candidate factors/target genes involved in the regulation of bone homeostasis have been identified. Representative examples included the new roles of osteocytes in bone homeostasis and endocrine functions. Additionally, the muscular and nervous system also seem to play a regulatory role in bone homeostasis. After all, these new findings have paved novel directions in osteoporosis research. This review is aimed to provide an overview on the current accepted concepts of osteoporosis-associated bone physiology and its potential research directions in the near future.
    Mechanisms of Ageing and Development 02/2015; 145. DOI:10.1016/j.mad.2015.02.001 · 3.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The A2B adenosine receptor (A2B AR), activated in response to high levels of endogenous adenosine, is the major AR subtype involved in mesenchymal stem cell (MSC) differentiation to osteoblasts and bone formation. For this reason, targeting of A2B AR with selective allosteric modulators may represent a promising pharmacological approach to the treatment of bone diseases. Herein, we report the characterization of a 3-keto-indole derivative, 2-(1-benzyl-1H-indol-3-yl)-2-oxo-N-phenylacetamide (KI-7), as A2B AR positive allosteric modulator in MSCs, demonstrating that this compound is able to potentiate the effects of either adenosine and synthetic orthosteric A2B AR agonists in mediating osteoblast differentiation in vitro. In detail, we observed that MSC treatment with KI-7 determined an increase in the expression of osteoblast-related genes (Runx2 and osterix) and osteoblast marker proteins (phosphatase alkaline and osteocalcin), associated with a stimulation of osteoblast mineralization. In the early phase of differentiation program, KI-7 significantly potentiated physiological and A2B AR agonist-mediated down-regulation of IL-6 release. Conversely, during the late stage of differentiation, when most of the cells have an osteoblast phenotype, KI-7 caused a sustained raise in IL-6 levels and an improvement in osteoblast viability. These data suggest that a positive allosteric modulation of A2B AR not only favours MSC commitment to osteoblasts, but also ensures a greater survival of mature osteoblasts. Our study paves the way for a therapeutic use of selective positive allosteric modulators of A2B AR in the control of osteoblast differentiation, bone formation and fracture repair.
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 09/2014; 1843(12). DOI:10.1016/j.bbamcr.2014.09.013 · 5.30 Impact Factor