Imatinib resistance and microcytic erythrocytosis in a KitV558Δ;T669I/+ gatekeeper-mutant mouse model of gastrointestinal stromal tumor

Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 08/2012; 109(34):E2276-E2283. DOI: 10.1073/pnas.1115240109
Source: PubMed

ABSTRACT Most gastrointestinal stromal tumors (GISTs) harbor a gain-of-function mutation in the Kit receptor. GIST patients treated
with the tyrosine kinase inhibitor imatinib frequently develop imatinib resistance as a result of second-site Kit mutations.
To investigate the consequences of second-site Kit mutations on GIST development and imatinib sensitivity, we engineered a
mouse model carrying in the endogenous Kit locus both the KitV558Δ mutation found in a familial case of GIST and the KitT669I (human KITT670I) “gatekeeper” mutation found in imatinib-resistant GIST patients. Similar to KitV558∆/+ mice, KitV558∆;T669I/+ mice developed gastric and colonic interstitial cell of Cajal hyperplasia as well as cecal GIST. In contrast to the single-mutant
KitV558∆/+ control mice, treatment of the KitV558∆;T669I/+ mice with either imatinib or dasatinib failed to inhibit oncogenic Kit signaling and GIST growth. However, this resistance
could be overcome by treatment of KitV558∆;T669I/+ mice with sunitinib or sorafenib. Although tumor lesions were smaller in KitV558∆;T669I/+ mice than in single-mutant mice, both interstitial cell of Cajal hyperplasia and mast cell hyperplasia were exacerbated in
KitV558∆;T669I/+ mice. Strikingly, the KitV558∆;T669I/+ mice developed a pronounced polycythemia vera-like erythrocytosis in conjunction with microcytosis. This mouse model should
be useful for preclinical studies of drug candidates designed to overcome imatinib resistance in GIST and to investigate the
consequences of oncogenic KIT signaling in hematopoietic as well as other cell lineages.

Download full-text


Available from: Joseph Michael Scandura, Aug 20, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The stem cell factor receptor (SCF) c-Kit plays a pivotal role in regulating cell proliferation and survival in many cell types. In particular, c-Kit is required for early amplification of erythroid progenitors, while it must disappear from cell surface for the cell entering the final steps of maturation in an erythropoietin-dependent manner. We initially observed that imatinib (IM), an inhibitor targeting the tyrosine kinase activity of c-Kit concomitantly down-regulated the expression of c-Kit and accelerated the Epo-driven differentiation of erythroblasts in the absence of SCF. We investigated the mechanism by which IM or related masitinib (MA) induce c-Kit down-regulation in the human UT-7/Epo cell line. We found that the down-regulation of c-Kit in the presence of IM or MA was inhibited by a pre-incubation with methyl-β-cyclodextrin suggesting that c-Kit was internalized in the absence of ligand. By contrast to SCF, the internalization induced by TKI was independent of the E3 ubiquitin ligase c-Cbl. Furthermore, c-Kit was degraded through lysosomal, but not proteasomal pathway. In pulse-chase experiments, IM did not modulate c-Kit synthesis or maturation. Analysis of phosphotyrosine peptides in UT-7/Epo cells treated or not with IM show that IM did not modify overall tyrosine phosphorylation in these cells. Furthermore, we showed that a T670I mutation preventing the full access of IM to the ATP binding pocket, did not allow the internalization process in the presence of IM. Altogether these data show that TKI-induced internalization of c-Kit is linked to a modification of the integrity of ATP binding pocket.
    PLoS ONE 04/2013; 8(4):e60961. DOI:10.1371/journal.pone.0060961 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The KIT receptor tyrosine kinase has important roles in hematopoiesis. We have recently produced a mouse model for imatinib resistant gastrointestinal stromal tumor (GIST) carrying the Kit(V558Δ) and Kit(T669I) (human KIT(T670I) ) mutations found in imatinib-resistant GIST. The Kit(V558Δ;T669I/+) mice developed microcytic erythrocytosis with an increase in erythroid progenitor numbers, a phenotype previously seen only in mouse models of polycythemia vera (PV) with alterations in Epo or Jak2. Significantly, the increased hematocrit observed in Kit(V558Δ;T669I/+) mice normalized upon splenectomy. In accordance with increased erythroid progenitors, myeloerythroid progenitor numbers were also elevated in the Kit(V558Δ;T669I/+) mice. Hematopoietic stem cell (HSC) numbers in the bone marrow (BM) of Kit(V558Δ;T669I/+) mice were unchanged in comparison to wild-type mice. However, increased HSC numbers were observed in fetal livers and the spleen and peripheral blood of adult Kit(V558Δ;T669I/+) mice. Importantly, HSC from Kit(V558Δ;T669I/+) BM had a competitive advantage over wild-type HSC. In response to 5-fluorouracil treatment elevated numbers of dividing Lin(-) Sca(+) cells were found in the Kit(V558Δ;T669I/+) BM compared to wild-type. Our study demonstrates that signaling from the Kit(V558Δ;T669I/+) receptor has important consequences in hematopoiesis enhancing HSC self-renewal and resulting in increased erythropoiesis.
    Stem Cells 08/2013; 31(8). DOI:10.1002/stem.1419 · 7.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic stem cells (HSCs) are heterogeneous with respect to their self-renewal, lineage, and reconstitution potentials. Although c-Kit is required for HSC function, gain and loss-of-function c-Kit mutants suggest that even small changes in c-Kit signaling profoundly affect HSC function. Herein, we demonstrate that even the most rigorously defined HSCs can be separated into functionally distinct subsets based on c-Kit activity. Functional and transcriptome studies show HSCs with low levels of surface c-Kit expression (c-Kit(lo)) and signaling exhibit enhanced self-renewal and long-term reconstitution potential compared with c-Kit(hi) HSCs. Furthermore, c-Kit(lo) and c-Kit(hi) HSCs are hierarchically organized, with c-Kit(hi) HSCs arising from c-Kit(lo) HSCs. In addition, whereas c-Kit(hi) HSCs give rise to long-term lymphomyeloid grafts, they exhibit an intrinsic megakaryocytic lineage bias. These functional differences between c-Kit(lo) and c-Kit(hi) HSCs persist even under conditions of stress hematopoiesis induced by 5-fluorouracil. Finally, our studies show that the transition from c-Kit(lo) to c-Kit(hi) HSC is negatively regulated by c-Cbl. Overall, these studies demonstrate that HSCs exhibiting enhanced self-renewal potential can be isolated based on c-Kit expression during both steady state and stress hematopoiesis. Moreover, they provide further evidence that the intrinsic functional heterogeneity previously described for HSCs extends to the megakaryocytic lineage.
    Journal of Experimental Medicine 01/2014; 211(2). DOI:10.1084/jem.20131128 · 13.91 Impact Factor
Show more