Hacke, K, Falahati, R, Flebbe-Rehwaldt, L, Kasahara, N and Gaensler, KM. Suppression of HLA expression by lentivirus-mediated gene transfer of siRNA cassettes and in vivo chemoselection to enhance hematopoietic stem cell transplantation. Immunol Res 44: 112-126

Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
Immunologic Research (Impact Factor: 3.1). 07/2009; 44(1-3):112-26. DOI: 10.1007/s12026-008-8088-z
Source: PubMed


Current approaches for hematopoietic stem cell (HSC) and organ transplantation are limited by donor and host-mediated immune responses to allo-antigens. Application of these therapies is limited by the toxicity of preparative and post-transplant immunosuppressive regimens and a shortage of appropriate HLA-matched donors. We have been exploring two complementary approaches for genetically modifying donor cells that achieve long-term suppression of cellular proteins that elicit host immune responses to mismatched donor antigens, and provide a selective advantage to genetically engineered donor cells after transplantation. The first approach is based on recent advances that make feasible targeted down-regulation of HLA expression. Suppression of HLA expression could help to overcome limitations imposed by extensive HLA polymorphisms that restrict the availability of suitable donors. Accordingly, we have recently investigated whether knockdown of HLA by RNA interference (RNAi) enables allogeneic cells to evade immune recognition. For efficient and stable delivery of short hairpin-type RNAi constructs (shRNA), we employed lentivirus-based gene transfer vectors that integrate into genomic DNA, thereby permanently modifying transduced donor cells. Lentivirus-mediated delivery of shRNA targeting pan-Class I and allele-specific HLA achieved efficient and dose-dependent reduction in surface expression of HLA in human cells, and enhanced resistance to allo-reactive T lymphocyte-mediated cytotoxicity, while avoiding non-MHC restricted killing. Complementary strategies for genetic engineering of HSC that would provide a selective advantage for transplanted donor cells and enable successful engraftment with less toxic preparative and immunosuppressive regimens would increase the numbers of individuals to whom HLA suppression therapy could be offered. Our second strategy is to provide a mechanism for in vivo selection of genetically modified HSC and other donor cells. We have uniquely combined transplantation during the neonatal period, when tolerance may be more readily achieved, with a positive selection strategy for in vivo amplification of drug-resistant donor HSC. This model system enables the evaluation of mechanisms of tolerance induction to neo-antigens, and allogeneic stem cells during immune ontogeny. HSC are transduced ex vivo by lentivirus-mediated gene transfer of P140K-O(6)-methylguanine-methyltransferase (MGMT(P140K)). The MGMT(P140K) DNA repair enzyme confers resistance to benzylguanine, an inhibitor of endogenous MGMT, and to chloroethylating agents such as BCNU. In vivo chemoselection enables enrichment of donor cells at the stem cell level. Using complementary approaches of in vivo chemoselection and RNAi-induced silencing of HLA expression may enable the generation of histocompatibility-enhanced, and eventually, perhaps "universally" compatible cellular grafts.

Full-text preview

Available from:
  • Source
    • "Anti-hF.IX antibody responses described by others after IM AAV2-hF.IX injection, in utero or in neonates,24 were not elicited in the current study after IP injection of AAV8-hF.IX. As the continuous presence of self-antigens has been shown to be required for maintenance of tolerance in prior studies with neonates,47, 48 it is likely that the stable hF.IX expression produced after neonatal IP administration is critical for the induction and maintenance of tolerance in this model. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neonatal AAV8-mediated Factor IX (F.IX) gene delivery was applied as a model for exploring mechanisms of tolerance induction during immune ontogeny. Intraperitoneal delivery of AAV8/ Factor IX (hF.IX) during weeks 1-4 of life, over a 20-fold dose range, directed stable hF.IX expression, correction of coagulopathy in F.IX-null hemophilia B mice, and induction of tolerance to hF.IX; however, only primary injection at 1-2 days of life enabled increasing AAV8-mediated hF.IX expression after re-administration, due to the absence of anti-viral capsid antibodies. Adoptive splenocyte transfer from tolerized mice demonstrated induction of CD4(+)CD25(+) T regulatory (Treg) populations that specifically suppressed anti-hF.IX antibody responses, but not responses to third party antigen. Induction of hF.IX antibodies was only observed in tolerized mice after in vivo CD4(+)CD25(+) cell depletion and hF.IX challenge. Thus, primary injection of AAV during a critical period in the first week of life does not elicit antiviral responses, enabling re-administration of AAV and augmentation of hF.IX levels. Expansion of hF.IX-specific CD4(+)CD25(+) Tregs has a major role in tolerance induction early in immune ontogeny. Neonatal gene transfer provides a useful approach for defining the ontogeny of immune responses and may suggest approaches for inducing tolerance in the context of genetic therapies.Gene Therapy advance online publication, 13 June 2013; doi:10.1038/gt.2013.22.
    Gene therapy 06/2013; 20(10). DOI:10.1038/gt.2013.22 · 3.10 Impact Factor
  • Source
    • "MHC class I knockdown was effective in preventing antibody-mediated cell lysis and CD8+ T cell response (20). Lentivirus-mediated silencing of HLA in human 293 cells promoted resistance to killing by alloreactive T-effector cells (21) and showed enhancement in hematopoietic stem cell transplantation (22). Encouraged by these results, we sought to use RNAi to disturb MHC class I expression in human islet cells through the silencing of β2 microglobulin (B2M), a key component of MHC class I molecules, thereby reducing graft rejection in a model of xenotransplantation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Islet transplantation has recently emerged as an acceptable clinical modality for restoring normoglycemia in patients with type 1 diabetes mellitus (T1DM). The long-term survival and function of islet grafts is compromised by immune rejection-related factors. Downregulation of factors that mediate immune rejection using RNA interference holds promise for improving islet graft resistance to damaging factors after transplantation. Here, we used a dual-purpose therapy/imaging small interfering (si)RNA magnetic nanoparticle (MN) probe that targets β-2 microglobulin (B2M), a key component of the major histocompatibility class I complex (MHC I). In addition to serving as a siRNA carrier, this MN-siB2M probe enables monitoring of graft persistence noninvasively using magnetic resonance imaging (MRI). Human islets labeled with these MNs before transplantation into B2M (null) NOD/scid mice showed significantly improved preservation of graft volume starting at 2 weeks, as determined by longitudinal MRI in an adoptive transfer model (P < 0.05). Furthermore, animals transplanted with MN-siB2M-labeled islets demonstrated a significant delay of up to 23.8 ± 4.8 days in diabetes onset after the adoptive transfer of T cells relative to 6.5 ± 4.5 days in controls. This study demonstrated that our approach could protect pancreatic islet grafts from immune rejection and could potentially be applied to allotransplantation and prevention of the autoimmune recurrence of T1DM in islet transplantation or endogenous islets.
    Diabetes 08/2012; 61(12). DOI:10.2337/db12-0441 · 8.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RNA interference (RNAi) is a powerful gene silencing mechanism that if properly harnessed has the potential to revolutionize medical interventions. Delivery of inhibitory RNAs to target tissues needs to be safe, efficient, and for many diseases, long-lasting, in order to exploit this endogenous mechanism for therapeutic purposes. Viral vector systems, based on adeno-associated viruses and lentiviruses, are ideally suited to mediate RNAi because they can safely transduce a wide range of tissues and provide sustained levels of gene expression. There are now many examples of the use of viral vector-mediated RNAi to inhibit gene expression in animal models of disease, and in many cases proof-of-principle has been demonstrated. The efficient delivery of RNAi has also uncovered a number of concerns that raise questions regarding the clinical application of this technology, including off-target effects, innate immune responses, and alterations in the endogenous microRNA (miRNA) pathway. However, over the past several years, work has been done to address these problems and a number of solutions are now being implemented to mitigate these potential risks. With a deeper understanding of RNAi and continued progress in designing RNAi effectors, viral vector-mediated RNAi has the potential to change the way many diseases are treated.
    Current Opinion in Pharmacology 10/2010; 10(5):534-42. DOI:10.1016/j.coph.2010.06.007 · 4.60 Impact Factor
Show more