Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation

Departments of Molecular Genetics and Microbiology and Internal Medicine and College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2012; 109(46):E3168-E3176. DOI: 10.1073/pnas.1210500109
Source: PubMed

ABSTRACT Autophagy is a cell biological pathway affecting immune responses. In vitro, autophagy acts as a cell-autonomous defense against
Mycobacterium tuberculosis, but its role in vivo is unknown. Here we show that autophagy plays a dual role against tuberculosis: antibacterial and anti-inflammatory.
M. tuberculosis infection of Atg5fl/fl LysM-Cre+ mice relative to autophagy-proficient littermates resulted in increased bacillary burden and excessive pulmonary inflammation
characterized by neutrophil infiltration and IL-17 response with increased IL-1α levels. Macrophages from uninfected Atg5fl/fl LysM-Cre+ mice displayed a cell-autonomous IL-1α hypersecretion phenotype, whereas T cells showed propensity toward IL-17 polarization
during nonspecific activation or upon restimulation with mycobacterial antigens. Thus, autophagy acts in vivo by suppressing
both M. tuberculosis growth and damaging inflammation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas aeruginosa is an opportunistic bacterium that can cause serious infection in immunocompromised individuals. Although autophagy may augment immune responses against P. aeruginosa infection in macrophages, the critical components and their role of autophagy in host defense are largely unknown. In this study, we show that P. aeruginosa infection-induced autophagy activates JAK2/STAT1α and increases NO production. Knocking down Atg7 resulted in increased IFN-γ release, excessive reactive oxygen species, and increased Src homology-2 domain-containing phosphatase 2 activity, which led to lowered phosphorylation of JAK2/STAT1α and subdued expression of NO synthase 2 (NOS2). In addition, we demonstrated the physiological relevance of dysregulated NO under Atg7 deficiency as atg7(-/-) mice were more susceptible to P. aeruginosa infection with increased mortality and severe lung injury than wild-type mice. Furthermore, P. aeruginosa-infected atg7(-/-) mice exhibited increased oxidation but decreased bacterial clearance in the lung and other organs compared with wild-type mice. Mechanistically, atg7 deficiency suppressed NOS2 activity by downmodulating JAK2/STAT1α, leading to decreased NO both in vitro and in vivo. Taken together, these findings revealed that the JAK2/STAT1α/NOS2 dysfunction leads to dysregulated immune responses and worsened disease phenotypes. Copyright © 2014 by The American Association of Immunologists, Inc.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages are the primary effector cells responsible for killing Mycobacterium tuberculosis (MTB) through various mechanisms, including apoptosis. However, MTB can evade host immunity to create a favorable environment for intracellular replication. MTB-infected human macrophages produce interleukin-32 (IL-32). IL-32 is a pro-inflammatory cytokine and has several isoforms. We previously found that IL-32γ reduced the burden of MTB in human macrophages, in part, through the induction of caspase-3-dependent apoptosis. However, based on our previous studies, we hypothesized that caspase-3-independent death pathways may also mediate IL-32 control of MTB infection. Herein, we assessed the potential roles of cathepsin-mediated apoptosis, caspase-1-mediated pyroptosis, and apoptosis-inducing factor (AIF) in mediating IL-32γ control of MTB infection in THP-1 cells. Differentiated human THP-1 macrophages were infected with MTB H37Rv alone or in the presence of specific inhibitors to caspase-1, cathepsin B/D, or cathepsin L for up to four days, after which TUNEL-positive cells were quantified; in addition, MTB was quantified by culture as well as by the percentage of THP-1 cells that were infected with green fluorescent protein (GFP)-labeled MTB as determined by microscopy. AIF expression was inhibited using siRNA technology. Inhibition of cathepsin B/D, cathepsin L, or caspase-1 activity significantly abrogated the IL-32γ-mediated reduction in the number of intracellular MTB and of the percentage of GFP-MTB-infected macrophages. Furthermore, inhibition of caspase-1, cathepsin B/D, or cathepsin L in the absence of exogenous IL-32γ resulted in a trend toward an increased proportion of MTB-infected THP-1 cells. Inhibition of AIF activity in the absence of exogenous IL-32γ also increased intracellular burden of MTB. However, since IL-32γ did not induce AIF and because the relative increases in MTB with inhibition of AIF were similar in the presence or absence of IL-32γ, our results indicate that AIF does not mediate the host-protective effect of IL-32γ against MTB. The anti-MTB effects of IL-32γ are mediated through classical caspase-3-dependent apoptosis as well as caspase-3-independent apoptosis.
    BMC Microbiology 12/2015; 15(1). DOI:10.1186/s12866-015-0366-z · 2.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The broad immunologic roles of autophagy span innate and adaptive immunity and are often manifested in inflammatory diseases. The immune effects of autophagy partially overlap with its roles in metabolism and cytoplasmic quality control but typically expand further afield to encompass unique immunologic adaptations. One of the best-appreciated manifestations of autophagy is protection against microbial invasion, but this is by no means limited to direct elimination of intracellular pathogens and includes a stratified array of nearly all principal immunologic processes. This Review summarizes the broad immunologic roles of autophagy. Furthermore, it uses the autophagic control of Mycobacterium tuberculosis as a paradigm to illustrate the breadth and complexity of the immune effects of autophagy.
    Journal of Clinical Investigation 01/2015; 125(1):75-84. DOI:10.1172/JCI73945 · 13.77 Impact Factor