Origin and evolution of carnivorism in the Ascomycota (fungi)

State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2012; 109(27):10960-10965. DOI: 10.1073/pnas.1120915109

ABSTRACT Carnivorism is one of the basic life strategies of fungi. Carnivorous fungi possess the ability to trap and digest their preys
by sophisticated trapping devices. However, the origin and development of fungal carnivorism remains a gap in evolution biology.
In this study, five protein-encoding genes were used to construct the phylogeny of the carnivorous fungi in the phylum Ascomycota;
these fungi prey on nematodes by means of specialized trapping structures such as constricting rings and adhesive traps. Our
analysis revealed a definitive pattern of evolutionary development for these trapping structures. Molecular clock calibration
based on two fossil records revealed that fungal carnivorism diverged from saprophytism about 419 Mya, which was after the
origin of nematodes about 550–600 Mya. Active carnivorism (fungi with constricting rings) and passive carnivorism (fungi with
adhesive traps) diverged from each other around 246 Mya, shortly after the occurrence of the Permian–Triassic extinction event
about 251.4 Mya. The major adhesive traps evolved around 198–208 Mya, which was within the time frame of the Triassic–Jurassic
extinction event about 201.4 Mya. However, no major carnivorous ascomycetes divergence was correlated to the Cretaceous–Tertiary
extinction event, which occurred more recently (about 65.5 Mya). Therefore, a causal relationship between mass extinction
events and fungal carnivorism evolution is not validated in this study. More evidence including additional fossil records
is needed to establish if fungal carnivorism evolution was a response to mass extinction events.

Download full-text


Available from: Zhiqiang An, Aug 02, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nematophagous fungi can trap and capture nematodes and other small invertebrates. This unique ability has made them ideal organisms from which to develop biological control agents against plant- and animal-parasitic nematodes. However, effective application of biocontrol agents in the field requires a comprehensive understanding about the ecology and population genetics of the nematophagous fungi in natural environments. Here, we genotyped 228 strains of the nematode-trapping fungus using 12 single nucleotide polymorphic markers located on eight random DNA fragments. The strains were from different ecological niches and geographical regions from China. Our analyses identified that ecological niche separations contributed significantly, whereas geographic separation contributed relatively little to the overall genetic variation in our samples of . Interestingly, populations from stressful environments seemed to be more variable and showed more evidence for recombination than those from benign environments at the same geographic areas. We discussed the implications of our results to the conservation and biocontrol application of in agriculture and forestry.
    Ecology and Evolution 02/2013; 3(2). DOI:10.1002/ece3.450 · 1.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Establishing the dates for the origin and main diversification events in the phylogeny of Ascomycota is among the most crucial remaining goals in understanding the evolution of Fungi. There have been several analyses of divergence times in the fungal tree of life in the last two decades, but most have yielded contrasting results for the origin of the major lineages. Moreover, very few studies have provided temporal estimates for a large set of clades within Ascomycota. We performed molecular dating to estimate the divergence times of most of the major groups of Ascomycota. To account for paleontological uncertainty, we included alternative fossil constraints as different scenarios to enable a discussion of the effect of selection of fossils. We used data from 6 molecular markers and 121 extant taxa within Ascomycota. Our various 'relaxed clock' scenarios suggest that the origin and diversification of the Pezizomycotina occurred in the Cambrian. The main lineages of lichen-forming Ascomycota originated at least as early as the Carboniferous, with successive radiations in the Jurassic and Cretaceous generating the diversity of the main modern groups. Our study provides new information about the timing of the main diversification events in Ascomycota, including estimates for classes, orders and families of both lichenized and non-lichenized Ascomycota, many of which had not been previously dated.
    PLoS ONE 06/2013; 8(6):e65576. DOI:10.1371/journal.pone.0065576 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Orbiliomycetes is one of the earliest diverging branches of the filamentous ascomycetes. The class contains nematode-trapping fungi that form unique infection structures, called traps, to capture and kill free-living nematodes. The traps have evolved differently along several lineages and include adhesive traps (knobs, nets or branches) and constricting rings. We show, by genome sequencing of the knob-forming species Monacrosporium haptotylum and comparison with the net-forming species Arthrobotrys oligospora, that two genomic mechanisms are likely to have been important for the adaptation to parasitism in these fungi. Firstly, the expansion of protein domain families and the large number of species-specific genes indicated that gene duplication followed by functional diversification had a major role in the evolution of the nematode-trapping fungi. Gene expression indicated that many of these genes are important for pathogenicity. Secondly, gene expression of orthologs between the two fungi during infection indicated that differential regulation was an important mechanism for the evolution of parasitism in nematode-trapping fungi. Many of the highly expressed and highly upregulated M. haptotylum transcripts during the early stages of nematode infection were species-specific and encoded small secreted proteins (SSPs) that were affected by repeat-induced point mutations (RIP). An active RIP mechanism was revealed by lack of repeats, dinucleotide bias in repeats and genes, low proportion of recent gene duplicates, and reduction of recent gene family expansions. The high expression and rapid divergence of SSPs indicate a striking similarity in the infection mechanisms of nematode-trapping fungi and plant and insect pathogens from the crown groups of the filamentous ascomycetes (Pezizomycotina). The patterns of gene family expansions in the nematode-trapping fungi were more similar to plant pathogens than to insect and animal pathogens. The observation of RIP activity in the Orbiliomycetes suggested that this mechanism was present early in the evolution of the filamentous ascomycetes.
    PLoS Genetics 11/2013; 9(11):e1003909. DOI:10.1371/journal.pgen.1003909 · 8.17 Impact Factor
Show more