The Molecular Chaperone GRP78/BiP in the Development of Chemoresistance: Mechanism and Possible Treatment

Institute of Toxicology and Genetics, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen, Germany.
Frontiers in Pharmacology (Impact Factor: 3.8). 02/2013; 4:10. DOI: 10.3389/fphar.2013.00010
Source: PubMed

ABSTRACT Treatment of several types of cancer such as lung, breast, prostate, and pancreas has shown notable progresses in the past decades. However, after an initial response, tumors eventually became resistant to chemotherapy. This phenomenon, known as chemoresistance, accounts for the death of most cancer patients. Several studies in patients refractory to therapy have revealed the upregulation of the molecular chaperone GRP78/Binding Protein, BiP (BiP) both at the RNA and protein expression level. Furthermore GRP78/BiP relocates to the cell membrane in malignant but not in benign cells. In this communication we review studies on the role and the mechanism of action of GRP78/BiP during development of chemoresistance in cancer cells. In addition we discuss the possible role of GRP78 as a biomarker and as a target in cancer therapy.

Download full-text


Available from: Danilo Maddalo, Jan 22, 2014
47 Reads
  • Source
    • "ER stress signaling is mediated by three proximal sensors, PERK, the IRE1 (inositol-requiring protein 1) / XBP1 (X-box binding protein 1) system and ATF6 (activating transcription factor 6). GRP78 plays a key role in regulating the ER stress response; under resting conditions the majority of GRP78 is associated with PERK and IRE1 and keeps these proteins in an inactive state (Gorbatyuk et al, 2013; Roller and Maddalo, 2013; Rao et al, 2012). GRP78, as a chaperone, also plays an important role in the protein folding processes that occur in the ER including during cancer, liver disease and virus replication. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The chaperone GRP78 / Dna K is conserved throughout evolution down to prokaryotes. The GRP78 inhibitor OSU-03012 (AR-12) interacted with sildenafil (Viagra) or tadalafil (Cialis) to rapidly reduce GRP78 levels in eukaryotes and as a single agent reduce Dna K levels in prokaryotes. Similar data with the drug combination were obtained for: HSP70, HSP90, GRP94, GRP58, HSP27, HSP40 and HSP60. OSU-03012/sildenafil treatment killed brain cancer stem cells and decreased the expression of: NPC1 and TIM1; LAMP1; and NTCP1, receptors for Ebola / Marburg / Hepatitis A, Lassa fever, and Hepatitis B viruses, respectively. Pre-treatment with OSU-03012/sildenafil reduced expression of the coxsakie and adenovirus receptor in parallel with it also reducing the ability of a serotype 5 adenovirus or coxsakie virus B4 to infect and to reproduce. Similar data were obtained using Chikungunya, Mumps, Measles, Rubella, RSV, CMV and Influenza viruses. OSU-03012 as a single agent at clinically relevant concentrations killed laboratory generated antibiotic resistant E. coli and clinical isolate multi-drug resistant N. gonorrhoeae and MRSE which was in bacteria associated with reduced Dna K and Rec A expression. The PDE5 inhibitors sildenafil or tadalafil enhanced OSU-03012 killing in N. gonorrhoeae and MRSE and low marginally toxic doses of OSU-03012 could restore bacterial sensitivity in N. gonorrhoeae to multiple antibiotics. Thus Dna K and bacterial phosphodiesterases are novel antibiotic targets, and inhibition of GRP78 is of therapeutic utility for cancer and also for bacterial and viral infections. This article is protected by copyright. All rights reserved
    Journal of Cellular Physiology 12/2014; 230(7). DOI:10.1002/jcp.24919 · 3.84 Impact Factor
  • Source
    • "These finding together with the work described in this communication identify Bag5 as a gene whose expression is regulated by chemotherapeutic drugs and an anti-apoptotic gene. In addition we showed that Bag5 interacts with the molecular chaperone GRP78/BiP, often found overexpressed in chemoresistant tumors (reviewed in [46]). Downregulating Bag5 levels and/or interfering with Bag5-GRP78/BiP interaction could therefore represent a novel therapeutic approach to overcame chemoresistance and to treat late stage tumors. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The Bag (Bcl-2 associated athanogene) family of proteins consists of 6 members sharing a common, single-copied Bag domain through which they interact with the molecular chaperone Hsp70. Bag5 represents an exception in the Bag family since it consists of 5 Bag domains covering the whole protein. Bag proteins like Bag1 and Bag3 have been implicated in tumor growth and survival but it is not known whether Bag5 also exhibits this function. Methods Bag5 mRNA and protein expression levels were investigated in prostate cancer patient samples using real-time PCR and immunoblot analyses. In addition immunohistological studies were carried out to determine the expression of Bag5 in tissue arrays. Analysis of Bag5 gene expression was carried out using one-way ANOVA and Bonferroni’s Multiple Comparison test. The mean values of the Bag5 stained cells in the tissue array was analyzed by Mann-Whitney test. Functional studies of the role of Bag5 in prostate cancer cell lines was performed using overexpression and RNA interference analyses. Results Our results show that Bag5 is overexpressed in malignant prostate tissue compared to benign samples. In addition we could show that Bag5 levels are increased following endoplasmic reticulum (ER)-stress induction, and Bag5 relocates from the cytoplasm to the ER during this process. We also demonstrate that Bag5 interacts with the ER-resident chaperone GRP78/BiP and enhances its ATPase activity. Bag5 overexpression in 22Rv.1 prostate cancer cells inhibited ER-stress induced apoptosis in the unfolded protein response by suppressing PERK-eIF2-ATF4 activity while enhancing the IRE1-Xbp1 axis of this pathway. Cells expressing high levels of Bag5 showed reduced sensitivity to apoptosis induced by different agents while Bag5 downregulation resulted in increased stress-induced cell death. Conclusions We have therefore shown that Bag5 is overexpressed in prostate cancer and plays a role in ER-stress induced apoptosis. Furthermore we have identified GRP78/BiP as a novel interaction partner of Bag5.
    BMC Cancer 03/2013; 13(1):96. DOI:10.1186/1471-2407-13-96 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The unfolded protein response (UPR) is an endoplasmic reticulum (ER)-based cytoprotective mechanism acting to prevent pathologies accompanying protein aggregation. It is frequently active in tumors, but relatively unstudied in gliomas. We hypothesized that UPR stress effects on glioma cells might protect tumors from additional exogenous stress (ie, chemotherapeutics), postulating that protection was concurrent with altered tumor cell metabolism. Using human brain tumor cell lines, xenograft tumors, human samples and gene expression databases, we determined molecular features of glioma cell UPR induction/activation, and here report a detailed analysis of UPR transcriptional/translational/metabolic responses. Immunohistochemistry, Western and Northern blots identified elevated levels of UPR transcription factors and downstream ER chaperone targets in gliomas. Microarray profiling revealed distinct regulation of stress responses between xenograft tumors and parent cell lines, with gene ontology and network analyses linking gene expression to cell survival and metabolic processes. Human glioma samples were examined for levels of the ER chaperone GRP94 by immunohistochemistry and for other UPR components by Western blotting. Gene and protein expression data from patient gliomas correlated poor patient prognoses with increased expression of ER chaperones, UPR target genes, and metabolic enzymes (glycolysis and lipogenesis). NMR-based metabolomic studies revealed increased metabolic outputs in glucose uptake with elevated glycolytic activity as well as increased phospholipid turnover. Elevated levels of amino acids, antioxidants, and cholesterol were also evident upon UPR stress; in particular, recurrent tumors had overall higher lipid outputs and elevated specific UPR arms. Clonogenicity studies following temozolomide treatment of stressed or unstressed cells demonstrated UPR-induced chemoresistance. Our data characterize the UPR in glioma cells and human tumors, and link the UPR to chemoresistance possibly via enhanced metabolism. Given the role of the UPR in the balance between cell survival and apoptosis, targeting the UPR and/or controlling metabolic activity may prove beneficial for malignant glioma therapeutics.
    PLoS ONE 08/2013; 8(8):e73267. DOI:10.1371/journal.pone.0073267 · 3.23 Impact Factor
Show more