Cranial Irradiation Alters the Behaviorally Induced Immediate-Early Gene Arc (Activity-Regulated Cytoskeleton-Associated Protein)

Brain and Spinal Injury Center, Department of Physical Therapy and Rehabilitation Sciences, University of California, San Francisco, San Francisco, California 94110, USA.
Cancer Research (Impact Factor: 9.28). 01/2009; 68(23):9763-70. DOI: 10.1158/0008-5472.CAN-08-1861
Source: PubMed

ABSTRACT Therapeutic irradiation of the brain is commonly used to treat brain tumors but can induce cognitive impairments that can severely affect quality of life. The underlying mechanisms responsible for radiation-induced cognitive deficits are unknown but likely involve alterations in neuronal activity. To gain some mechanistic insight into how irradiation may affect hippocampal neurons known to be associated with cognitive function, we quantitatively assessed the molecular distribution of the behaviorally induced immediate-early gene Arc (activity-regulated cytoskeleton-associated protein) at the level of mRNA and the protein. Young adult C57BL/6J mice received whole-brain irradiation with 0 or 10 Gy, and 1 week or 2 months later, exploration of a novel environment was used to induce Arc expression. The fractions of neurons expressing Arc mRNA and Arc protein were detected using fluorescence in situ hybridization and immunocytochemistry, respectively. Our results showed that there was a significant reduction in the percentage of neurons expressing Arc protein 1 week after irradiation, whereas 2 months after irradiation, there was a reduction in the percentage of neurons expressing both Arc mRNA and Arc protein. Importantly, radiation-induced changes in Arc expression were not a result of neuronal cell loss. The changes observed at 2 months were associated with a significant increase in the number of activated microglia, supporting the idea that inflammation may contribute to neuronal dysfunction. These findings are the first to show that local brain irradiation initiates changes in hippocampal neurons that disrupt the activity patterns (Arc expression) associated with neuroplasticity and memory.


Available from: John R Fike, Mar 21, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intrauterinal development in mammals represents a very sensitive period of life in relation to many environmental factors, including ionizing radiation (IR). The developing nervous system is particularly vulnerable to IR, and the consequences of exposure are of importance because of its potential health risks. The aim of our work was to assess whether prenatal irradiation of rats on the 17th day of embryonic development with a dose of 1 Gy would affect the formation of new cells and the number of mature neurons in the hippocampus and the selected forms of behaviour in the postnatal period. Male progeny of irradiated and control females was tested at ages of 3 weeks, 2 and 3 months. The number of mitotically active cells in the gyrus dentatus (GD) of the hippocampus was significantly reduced in irradiated rats aged 3 weeks. In irradiated rats aged 2 months, a significant reduction of mature neurons in CA1 area and in GD of the hippocampus was observed. The IR negatively influenced the spatial memory in Morris water maze, significantly decreased the exploratory behaviour and increased the anxiety-like behaviour in elevated plus-maze in rats aged 2 months. No significant differences were observed in animals aged 3 months compared with controls of the same age. A significant correlation between the number of mature neurons in the hilus and of the cognitive performances was found. Our results show that a low dose of radiation applied during the sensitive phase of brain development can influence the level of neurogenesis in the subgranular zone of GD and cause an impairment of the postnatal development of mental functions.
    Cellular and Molecular Neurobiology 12/2014; 35(1). DOI:10.1007/s10571-014-0144-8 · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cranial irradiation (IR) is commonly used for the treatment of brain tumors but may cause disastrous brain injury, especially in the hippocampus, which has important cognition and emotional regulation functions. Several preclinical studies have investigated the mechanisms associated with cranial IR-induced hippocampal dysfunction such as memory defects and depression-like behavior. However, current research on hippocampal dysfunction and its associated mechanisms, with the ultimate goal of overcoming the side effects of cranial radiation therapy in the hippocampus, is still very much in progress. This article reviews several in vivo studies on the possible mechanisms of radiation-induced hippocampal dysfunction, which may be associated with hippocampal neurogenesis, neurotrophin and neuroinflammation. Thus, this review may be helpful to gain new mechanistic insights into hippocampal dysfunction following cranial IR and provide effective strategies for potential therapeutic approaches for cancer patients receiving radiation therapy.
    Brain Behavior and Immunity 01/2015; 45. DOI:10.1016/j.bbi.2015.01.007 · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ionizing radiation induces altered brain tissue homeostasis and can lead to morphological and functional deficits. In this study, adult male Wistar rats received whole-body exposure with fractionated doses of gamma rays (a total dose of 5 Gy) and were investigated 30 and 60 days later. Immunohistochemistry and confocal microscopy were used to determine proliferation rate of cells residing or derived from the forebrain anterior subventricular zone (SVZa) and microglia distributed along and/or adjacent to subventricular zone-olfactory bulb axis. Cell counting was performed in four anatomical parts along the well-defined pathway, known as the rostral migratory stream (RMS) represented by the SVZa, vertical arm, elbow and horizontal arm of the RMS. Different spatiotemporal distribution pattern of cell proliferation was seen up to 60 days after irradiation through the migratory pathway. A population of neuroblasts underwent less evident changes up to 60 days after treatment. Fractionated exposure led to decline or loss of resting as well as reactive forms of microglia until 60 days after irradiation. Results showed that altered expression of the SVZa derived cells and ultimative decrease of microglia may contribute to development of radiation-induced late effects.
    Neurochemical Research 12/2014; 40(3). DOI:10.1007/s11064-014-1495-8 · 2.55 Impact Factor