Article

Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration.

Biozentrum, University of Basel, Basel, CH-4056, Switzerland.
Cell metabolism (Impact Factor: 17.35). 12/2008; 8(5):399-410. DOI: 10.1016/j.cmet.2008.09.003
Source: PubMed

ABSTRACT raptor is a specific and essential component of mammalian TOR complex 1 (mTORC1), a key regulator of cell growth and metabolism. To investigate a role of adipose mTORC1 in regulation of adipose and whole-body metabolism, we generated mice with an adipose-specific knockout of raptor (raptor(ad-/-)). Compared to control littermates, raptor(ad-/-) mice had substantially less adipose tissue, were protected against diet-induced obesity and hypercholesterolemia, and exhibited improved insulin sensitivity. Leanness was in spite of reduced physical activity and unaffected caloric intake, lipolysis, and absorption of lipids from the food. White adipose tissue of raptor(ad-/-) mice displayed enhanced expression of genes encoding mitochondrial uncoupling proteins characteristic of brown fat. Leanness of the raptor(ad-/-) mice was attributed to elevated energy expenditure due to mitochondrial uncoupling. These results suggest that adipose mTORC1 is a regulator of adipose metabolism and, thereby, controls whole-body energy homeostasis.

0 Bookmarks
 · 
170 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanisms underlying reproductive aging and menopausal age in female mammals are poorly understood. Mechanistic target of rapamycin complex 1 (mTORC1) is a central controller of cell growth and proliferation. To determine whether mTORC1 signaling in oocytes plays a direct role in physiological follicular development and fertility in female mice, we conditionally deleted the specific and essential mTORC1 component Rptor (regulatory-associated protein of mTORC1) from the oocytes of primordial follicles by using transgenic mice expressing growth differentiation factor 9 (Gdf-9) promoter-mediated Cre recombinase. We provide in vivo evidence that deletion of Rptor in the oocytes of both primordial and further-developed follicles leads to the loss of mTORC1 signaling in oocytes as indicated by loss of phosphorylation of S6K1 and 4e-bp1 at T389 and S65, respectively. However, the follicular development and fertility of mice lacking Rptor in oocytes were not affected. Mechanistically, the loss of mTORC1 signaling in Rptor-deleted mouse oocytes led to the elevation of phosphatidylinositol 3-kinase (PI3K) signaling that maintained normal follicular development and fertility. Therefore, this study shows that loss of mTORC1 signaling in oocytes triggers a compensatory activation of the PI3K signaling cascade that maintains normal ovarian follicular development and fertility.
    PLoS ONE 01/2014; 9(10):e110491. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inhibition of mTOR (mechanistic target of rapamycin) by the macrolide rapamycin has many beneficial effects in mice, including extension of lifespan and reduction or prevention of several age-related diseases. At the same time, chronic rapamycin treatment causes impairments in glucose metabolism including hyperglycemia, glucose intolerance and insulin resistance. It is unknown whether these metabolic effects of rapamycin are permanent or whether they can be alleviated. Here, we confirmed that rapamycin causes glucose intolerance and insulin resistance in both inbred and genetically heterogeneous mice fed either low fat or high fat diets, suggesting that these effects of rapamycin are independent of genetic background. Importantly, we also found that these effects were almost completely lost within a few weeks of cessation of treatment, showing that chronic rapamycin treatment does not induce permanent impairment of glucose metabolism. Somewhat surprisingly, chronic rapamycin also promoted increased accumulation of adipose tissue in high fat fed mice. However, this effect too was lost when rapamycin treatment was ended suggesting that this effect of rapamycin is also not permanent. The reversible nature of rapamycin's alterations of metabolic function suggests that these potentially detrimental side-effects might be managed through alternative dosing strategies or concurrent treatment options.
    Aging 09/2014; 6(9):742-54. · 4.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A clerodane diterpene, 16α-Hydroxycleroda-3, 13 (14) Z-dien-15, 16-olide (compound 1) isolated from Polyalthia longifolia had previously been reported as a new structural class of HMG-CoA reductase inhibitor apart from statins. Statins are known to be anti-adipogenic in nature. The distant structural similarity between compound 1 and lovastatin (polyketide class of compound) prompted us to investigate effects of diterpene compound 1 on adipogenesis and thereby obesity. High content microscopy proved diterpene compound 1 exhibits better anti-adipogenic activity and less toxicity in differentiating adipocytes. Moreover, it reduced expression levels of PPARγ, C/EBPα and GLUT4 during differentiation in time and concentration dependent manner. Diterpene compound 1 during early differentiation reduced MDI induced- Akt/mTOR phosphorylation and expression of cell cycle proteins, and thereby halted mitotic clonal expansion, the decisive factor in early adipogenesis. Further, its anti-adipogenic activity was validated in murine mesenchymal cell-line C3H10T1/2 and human mesenchymal stem cell models of adipogenic differentiation. When compound 1 was administered along with HFD, for another 8 weeks in 2 month HFD fed overweight mice (with BMI>30 and impaired glucose tolerance), it attenuated weight gain and epididymal fat accumulation. It improved body glucose tolerance, reduced HFD induced increase in total cholesterol and leptin/adiponectin ratio. All these effects were comparable to standard anti-obesity drug Orlistat with added edge of potently decreasing circulating triglyceride levels comparable to normal chow fed group. Histological analysis shows that compound 1 inhibit adipocyte hypertrophy and decreased steatosis in hepatocytes. Both in vivo and in vitro results demonstrate a potential value of compound 1 as a novel anti-adipogenic and anti-obesity agent.
    Molecular and Cellular Endocrinology 10/2014; · 4.04 Impact Factor

Full-text (3 Sources)

Download
125 Downloads
Available from
Jun 5, 2014