Article

A core gut microbiome in obese and lean twins

Center for Genome Sciences, Washington University School of Medicine, St Louis, Missouri 63108, USA.
Nature (Impact Factor: 42.35). 12/2008; 457(7228):480-4. DOI: 10.1038/nature07540
Source: PubMed

ABSTRACT The human distal gut harbours a vast ensemble of microbes (the microbiota) that provide important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides. Studies of a few unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is used and stored. Here we characterize the faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers, to address how host genotype, environmental exposure and host adiposity influence the gut microbiome. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person's gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable 'core microbiome' at the gene, rather than at the organismal lineage, level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiological states (obese compared with lean).

Full-text

Available from: Alexis E Duncan, May 29, 2015
11 Followers
 · 
407 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Irritable bowel syndrome (IBS) is a multifactorial functional disorder with no clearly defined etiology or pathophysiology. Modern culture-independent techniques have improved the understanding of the gut microbiota's composition and demonstrated that an altered gut microbiota profile might be found in at least some subgroups of IBS patients. Research on IBS from a microbial perspective is gaining momentum and advancing. This review will therefore highlight potential links between the gut microbiota and IBS by discussing the current knowledge of the gut microbiota; it will also illustrate bacterial-host interactions and how alterations to these interactions could exacerbate, induce or even help alleviate IBS.
    Gut and Liver 05/2015; 9(3):318-31. DOI:10.5009/gnl14344 · 1.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human body hosts rich and diverse microbial communities. Our microbiota affects the normal human physiology, and compositional changes might alter host homeostasis and, therefore, disease risk. The microbial community structure may sometimes occupy discrete configurations and under certain circumstances vary continuously. The ability to characterize accurately the ecology of human-associated microbial communities became possible by advances in deep sequencing and bioinformatics analyses.
    04/2015; 6(2):e0018. DOI:10.5041/RMMJ.10202
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene content differences in human gut microbes can lead to inter-individual phenotypic variations such as digestive capacity. It is unclear whether gene content variation is caused by differences in microbial species composition or by the presence of different strains of the same species; the extent of gene content variation in the latter is unknown. Unlike pan-genome studies of cultivable strains, the use of metagenomic data can provide an unbiased view of structural variation of gut bacterial strains by measuring them in their natural habitats, the gut of each individual in this case, representing native boundaries between gut bacterial populations. We analyzed publicly available metagenomics data from fecal samples to characterize inter-individual variation in gut bacterial species. A comparison of 11 abundant gut bacterial species showed that the gene content of strains from the same species differed, on average, by 13% between individuals. This number is based on gene deletions only and represents a lower limit, yet the variation is already in similar range as observed between completely sequenced strains of cultivable species. We show that accessory genes that differ considerably between individuals can encode important functions, such as polysaccharide utilization and capsular polysaccharide synthesis loci. Metagenomics can yield insights into gene content variation of strains in complex communities, which cannot be predicted by phylogenetic marker genes alone. The large degree of inter-individual variability in gene content implies that strain resolution must be considered in order to fully assess the functional potential of an individual's human gut microbiome.
    Genome biology 04/2015; 16(1):82. DOI:10.1186/s13059-015-0646-9 · 10.47 Impact Factor