Pressure-induced phase transitions in AgClO_ {4}

Physical review. B, Condensed matter (Impact Factor: 3.66). 04/2012; 84(6). DOI: 10.1103/PhysRevB.84.064103


AgClO4 has been studied under compression by x-ray diffraction and density functional theory calculations. Experimental evidence of a structural phase transition from the tetragonal structure of AgClO4 to an orthorhombic barite-type structure has been found at 5.1 GPa. The transition is supported by total-energy calculations. In addition, a second transition to a monoclinic structure is theoretically proposed to take place beyond 17 GPa. The equation of state of the different phases is reported as well as the calculated Raman-active phonons and their pressure evolution. Finally, we provide a description of all the structures of AgClO4 and discuss their relationships. The structures are also compared with those of AgCl in order to explain the structural sequence determined for AgClO4.

Download full-text


Available from: Lourdes Gracia, Jan 07, 2014
1 Follower
25 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Room-temperature angle-dispersive x-ray diffraction measurements on zircon-type TbVO and CeVO were performed in a diamond-anvil cell up to 50 GPa using neon as a pressure-transmitting medium. In TbVO, we found at 6.4 GPa evidence of a nonreversible pressure-induced structural phase transition from zircon to a scheelite-type structure. A second transition to an M-fergusonite-type structure was found at 33.9 GPa, which is reversible. Zircon-type CeVO exhibits two pressure-induced transitions: first, an irreversible transition to a monazite-type structure at 5.6 GPa and, second, at 14.7 GPa, a reversible transition to an orthorhombic structure. No additional phase transitions or evidences of chemical decomposition are found in the experiments. The equations of state and axial compressibility for the different phases are also determined. Finally, the sequence of structural transitions and the compressibilities are discussed in comparison with other orhtovanadates and the influence of nonhydrostaticity commented.
    Physical Review B 01/2012; 84(22). DOI:10.1103/PhysRevB.84.224121 · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We theoretically investigated the structural stability and electronic properties of ScVO4 by the first-principles pseudopotential method. The tetragonal zircon-type and scheelite-type structures, LaTaO4-type structure of ScVO4 have been considered. The calculations indicate that the LaTaO4-type phase is not stable in the pressure 0-100 GPa, and the structural phase transformation from zircon to scheelite-type structure occurs at 5.4 GPa. The band structure shows that zircon-type structure at zero pressure and scheelite-type structure at transition pressure have direct gaps of 2.58 eV and 2.35 eV, respectively. The detailed volume changes during the phase transition were analyzed.
    Physica B Condensed Matter 10/2013; 426:20-23. DOI:10.1016/j.physb.2013.05.035 · 1.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new wolframite-type polymorph of InVO4 is identified under compression near 7 GPa by in situ high-pressure (HP) X-ray diffraction (XRD) and Raman spectroscopic investigations on the stable orthorhombic InVO4. The structural transition is accompanied by a large volume collapse (ΔV/V = -14%) and a drastic increase in bulk modulus (from 69 to 168 GPa). Both techniques also show the existence of a third phase coexisting with the low- and high-pressure phases in a limited pressure range close to the transition pressure. XRD studies revealed a highly anisotropic compression in orthorhombic InVO4. In addition, the compressibility becomes nonlinear in the HP polymorph. The volume collapse in the lattice is related to an increase of the polyhedral coordination around the vanadium atoms. The transformation is not fully reversible. The drastic change in the polyhedral arrangement observed at the transition is indicative of a reconstructive phase transformation. The HP phase here found is the only modification of InVO4 reported to date with 6-fold coordinated vanadium atoms. Finally, Raman frequencies and pressure coefficients in the low- and high-pressure phases of InVO4 are reported.
    Inorganic Chemistry 10/2013; 52(21). DOI:10.1021/ic402043x · 4.76 Impact Factor
Show more