Article

Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity.

Ecole Polytechnique Fédérale de Lausanne (EPFL), ISREC, Swiss Institute for Experimental Cancer Research, School of Life Science, CH-1066 Epalinges, Switzerland.
Cell stem cell (Impact Factor: 23.56). 01/2009; 3(6):611-24. DOI: 10.1016/j.stem.2008.09.005
Source: PubMed

ABSTRACT Myc activity is emerging as a key element in acquisition and maintenance of stem cell properties. We have previously shown that c-Myc deficiency results in accumulation of defective hematopoietic stem cells (HSCs) due to niche-dependent differentiation defects. Here we report that immature HSCs coexpress c-myc and N-myc mRNA at similar levels. Although conditional deletion of N-myc in the bone marrow does not affect hematopoiesis, combined deficiency of c-Myc and N-Myc (dKO) results in pancytopenia and rapid lethality. Interestingly, proliferation of HSCs depends on both myc genes during homeostasis, but is c-Myc/N-Myc independent during bone marrow repair after injury. Strikingly, while most dKO hematopoietic cells undergo apoptosis, only self-renewing HSCs accumulate the cytotoxic molecule Granzyme B, normally employed by the innate immune system, thereby revealing an unexpected mechanism of stem cell apoptosis. Collectively, Myc activity (c-Myc and N-Myc) controls crucial aspects of HSC function including proliferation, differentiation, and survival.

0 Bookmarks
 · 
124 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tissue homeostasis requires the presence of multipotent adult stem cells that are capable of efficient self-renewal and differentiation; some of these have been shown to exist in a dormant, or quiescent, cell cycle state. Such quiescence has been proposed as a fundamental property of hematopoietic stem cells (HSCs) in the adult bone marrow, acting to protect HSCs from functional exhaustion and cellular insults to enable lifelong hematopoietic cell production. Recent studies have demonstrated that HSC quiescence is regulated by a complex network of cell-intrinsic and -extrinsic factors. In addition, detailed single-cell analyses and novel imaging techniques have identified functional heterogeneity within quiescent HSC populations and have begun to delineate the topological organization of quiescent HSCs. Here, we review the current methods available to measure quiescence in HSCs and discuss the roles of HSC quiescence and the various mechanisms by which HSC quiescence is maintained. © 2014. Published by The Company of Biologists Ltd.
    Development 12/2014; 141(24):4656-4666. · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromothripsis is a catastrophic cellular event recently described in cancer in which chromosomes undergo massive deletion and rearrangement. Here, we report a case in which chromothripsis spontaneously cured a patient with WHIM syndrome, an autosomal dominant combined immunodeficiency disease caused by gain-of-function mutation of the chemokine receptor CXCR4. In this patient, deletion of the disease allele, CXCR4(R334X), as well as 163 other genes from one copy of chromosome 2 occurred in a hematopoietic stem cell (HSC) that repopulated the myeloid but not the lymphoid lineage. In competitive mouse bone marrow (BM) transplantation experiments, Cxcr4 haploinsufficiency was sufficient to confer a strong long-term engraftment advantage of donor BM over BM from either wild-type or WHIM syndrome model mice, suggesting a potential mechanism for the patient's cure. Our findings suggest that partial inactivation of CXCR4 may have general utility as a strategy to promote HSC engraftment in transplantation. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell 02/2015; · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Specialized blood cells are generated through the entire life of an organism by differentiation of a small number of hematopoietic stem cells (HSC). There are strictly regulated mechanisms assuring a constant and controlled production of mature blood cells. Although such mechanisms are not completely understood, some factors regulating cell cycle and differentiation have been identified. We have previously shown that Caspase-3 is an important regulator of HSC homeostasis and cytokine responsiveness. p21cip1/waf1 is a known cell cycle regulator, however its role in stem cell homeostasis seems to be limited. Several reports indicate interactions between p21cip1/waf1 and Caspase-3 in a cell type dependent manner. Here we studied the impact of simultaneous depletion of both factors on HSC homeostasis. Depletion of both Caspase-3 and p21cip1/waf1 resulted in an even more pronounced increase in the frequency of hematopoietic stem and progenitor cells. In addition, simultaneous deletion of both genes revealed a further increase of cell proliferation compared to single knock-outs and WT control mice, while apoptosis or self-renewal ability were not affected in any of the genotypes. Upon transplantation, p21cip1/waf1-/- bone marrow did not reveal significant alterations in engraftment of lethally irradiated mice, while Caspase-3 deficient HSPC displayed a significant reduction of blood cell production. However, when both p21cip1/waf1 and Caspase-3 were eliminated this differentiation defect caused by Caspase-3 deficiency was abrogated.
    PLoS ONE 10/2014; 9(10):e109266. · 3.53 Impact Factor

Full-text (2 Sources)

Download
21 Downloads
Available from
May 22, 2014