Article

Postsynaptic mechanisms of excitotoxicity: Involvement of postsynaptic density proteins, radicals, and oxidant molecules.

Division of Fundamental Neurobiology, University Health Network, Toronto, Ontario, Canada M5T 2S8.
Neuroscience (Impact Factor: 3.12). 12/2008; 158(1):293-300. DOI: 10.1016/j.neuroscience.2008.10.021
Source: PubMed

ABSTRACT Traditional models of neuronal excitotoxicity focused on the overactivation of receptors such as the ionotropic N-methyl-D-aspartate (NMDA)-subtype glutamate receptor. Recent developments have shifted focus to downstream neurotoxic signaling molecules with exciting implications to specific strategies for treating excitotoxic disorders. This review outlines these developments and introduces newly emerging evidence implicating the involvement of the melastatin subfamily in anoxic neuronal death. Both of these converge on the production of reactive oxygen species (ROS), including superoxide, nitric oxide (NO) and the oxidant peroxynitrite.

0 Bookmarks
 · 
51 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic brain injury (TBI) is the most important cause of disability in individuals under the age of 45 years and thus represents a significant social and economic burden. Evidence strongly suggests that oxidative stress is a cornerstone event leading to and propagating secondary injury mechanisms such as excitotoxicity, mitochondrial dysfunction, apoptosis, autophagy, brain edema, and inflammation. TBI has defied conventional approaches to diagnosis and therapy development because of its heterogeneity and complexity. Therefore, it is necessary to explore alternative approaches to therapy development for TBI. The aim of this review is to present a therapeutic approach for TBI, taking into account the evidence supporting the role for oxidative stress in the pathophysiological processes of secondary brain injury. The role of agents such as mitochondria-targeted antioxidants (melatonin and new mitochondria-targeted antioxidants), nicotinamide adenine dinucleotide phosphate (NADPH) inhibitors (antioxidant vitamins and apocynin), and other compounds having mainly antioxidant properties (hydrogen-rich saline, sulforaphane, U-83836E, omega-3, and polyphenols) is covered. The rationale for innovative antioxidant therapies based on current knowledge and particularly the most recent studies regarding this field is discussed. Particular considerations and translational potential of new TBI treatments are examined and a novel therapeutic proposal for TBI is presented.
    CNS Drugs 02/2014; · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is thought to be a contributing factor in many chronic neurodegenerative pathologies, as well as acute cerebrovascular disorders such as stroke. Peroxiredoxins are a family of antioxidant enzymes that reduce peroxides directly through the use of a redox active cysteine within their active site, which in the process becomes oxidized. In order to cycle back to the reduced state, many peroxiredoxins rely on thiol-dependent reduction by the ubiquitous antioxidant enzyme thioredoxin. Peroxiredoxins, together with thioredoxin and thioredoxin's own 'recycling enzyme', thioredoxin reductase, represent an antioxidant enzymic system of growing significance in the context of neuronal physiology and pathology. Overexpression, knockdown, and knockout approaches have demonstrated an important role for peroxiredoxins in protecting neurons from oxidative insults. It is also becoming clear that neuronal peroxiredoxins are subjected to post-translational modifications that impair function as part of disease pathology. Conversely, components of this pathway are also subject to dynamic upregulation such as via endogenous synaptic activity-dependent signaling and induction of the Nrf2-dependent Phase II response. As such, the thioredoxin-peroxiredoxin system represents a potential therapeutic target for central nervous system disorders associated with oxidative stress.
    Antioxidants & Redox Signaling 04/2011; 14(8):1467-77. · 8.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is associated with increased brain levels of β-amyloid (Aβ) peptides, which readily self-aggregate into fibrils and oligomers that have particularly deleterious properties toward synapses of excitatory glutamatergic neurons. Here, we examined the neuroprotective effects of 1-methyl-1,2,3,4,-tetrahydroisoquinoline (1MeTIQ) against Aβ-induced loss of synaptic proteins in cultured primary hippocampal neurons. Exposure of mature primary hippocampal neurons to 10 μM synthetic Aβ1-40 over 72 h resulted in ~60 % reduction in the surface expression of NR1 subunit of the NMDA receptor (NMDAR), PSD-95, and synaptophysin, without causing neuronal death. Concomitant treatment with 500 μM of 1MeTIQ, a low-affinity NMDAR antagonist significantly ameliorated the loss of synaptic protein markers. The neuroprotective properties of 1MeTIQ were compared with those of MK-801, which at 0.5 μM concentration also prevented Aβ1-40-induced loss of synaptic proteins in primary neuronal cultures. Furthermore, we provide novel evidence demonstrating effectiveness of 1MeTIQ in reducing the level of reactive oxygen species (ROS) in primary neuronal culture system. As oxidative stress contributes importantly to neurodegeneration in AD, 1MeTIQ may provide a dual neuroproctective effect in AD both as a NMDARs antagonist and ROS formation inhibitor. 1MeTIQ occurs endogenously at low concentrations in the brain and its synthetic form readily penetrates the blood-brain barrier after the systemic administration. Our results highlight a possibility of the application of 1MeTIQ as a neuroprotective agent in AD-related neurodegeneration.
    Neurotoxicity Research 11/2013; · 2.87 Impact Factor