Doping and temperature dependence of Mn 3d states in A-site ordered manganites

Physical review. B, Condensed matter (Impact Factor: 3.66). 11/2010; 82(23). DOI: 10.1103/PhysRevB.82.235108
Source: arXiv


We present a systematic study of the electronic structure in A-site ordered manganites as function of doping and temperature. The energy dependencies observed with soft x-ray resonant diffraction (SXRD) at the Mn L2,3 edges are compared with structural investigations using neutron powder diffraction as well as with cluster calculations. The crystal structures obtained with neutron powder diffraction reflect the various orbital and charge ordered phases, and show an increase in the Mn-O-Mn bond angle as function of doping and temperature. Cluster calculations show that the observed spectral changes in SXRD as a function of doping are more pronounced than expected from an increase in bandwitdh due to the increase in Mn-O-Mn bond angle and are best described by holes that are distributed at the neighboring oxygen ions. These holes are not directly added to the Mn 3d shell but centered at the Mn site. In contrast, the spectral changes in SXRD as function of temperature are best described by an increase of magnetic correlations. This demonstrates the strong correlations between orbitals and magnetic moments of the 3d states.

Download full-text


Available from: Ekaterina Pomjakushina, Oct 08, 2015
23 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resonant Elastic X-Ray Scattering (REXS) has played a fundamental role in understanding electronic properties and in revealing hidden order, local symmetries and exotic states realized in correlated solids. This article reports on some of the relevant scientific contributions and technical advances over the last 20 years, by providing a list of related publications produced by various groups all around the world. The given perspective is that of a group of young scientists involved at various times in the investigation of the beauty of electronic ordering by the REXS technique.
    The European Physical Journal Special Topics 06/2012; 208(1-1):89-98. DOI:10.1140/epjst/e2012-01609-0 · 1.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resonant soft x-ray absorption measurements at the O K edge on a SrMnO3/LaMnO3 superlattice show a shoulder at the energy of doped holes, which corresponds to the main peak of resonant scattering from the modulation in the doped hole density. Scattering line shape at the Mn L3,2 edges has a strong variation below the ferromagnetic transition temperature. This variation has a period equal to half the superlattice superperiod and follows the development of the ferromagnetic moment, pointing to a ferromagnetic phase developing at the interfaces. It occurs at the resonant energies for Mn3+ and Mn4+ valences. A model for these observations is presented, which includes a double-exchange two-site orbital and the variation with temperature of the hopping frequency tij between the two sites.
    Physical review. B, Condensed matter 07/2012; 86(17). DOI:10.1103/PhysRevB.86.174427 · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffraction Anomalous Fine Structure (DAFS) combines the long-range, crystallographic sensitivity of X-ray diffraction with the short-range sensitivity of X-ray Absorption Spectroscopy (XAS). In comparison to other spectroscopic methods, DAFS can additionally distinguish phases of different translational symmetry by choice of momentum transfer, or isolate spectra from chemically identical atoms on various Wyckoff sites of a crystal's structure using crystallographic weights. The Anisotropy of Anomalous Scattering (AAS) extends the concept of isotropically scattering atoms to a more general case, where the atom's scattering characteristics depend on the polarization as well as the wavevector of the incident and scattered X-rays. These can be written as tensors that reflect the local site symmetries of the resonant atom. Forbidden Reflection Near-Edge Diffraction (FRED) is an elegant way to measure AAS by using reflections that are extinguished in the special case of isotropically scattering atoms. They can only be observed due to the non-isotropic contributions at photon energies in the vicinity of an absorption edge where electronic transitions occur. Combining the site selectivity of DAFS with the information accessible through AAS allows probing the short-range order and local orbitals of selected atoms in a crystal structure of a chosen phase. The present condensed review gives a brief overview on the pioneer work, the theory and sensitivities as well as selected recent applications of these powerful and promising Resonant X-ray Diffraction (RXD) methods. Additionally, some recent work of the authors is included exemplarily for the model structure rutile TiO2 presenting the progress in measurement and interpretation.
    Crystal Research and Technology 01/2014; 49(1). DOI:10.1002/crat.201300430 · 0.94 Impact Factor