Common phenotypic and genotypic antimicrobial resistance patterns found in a case study of multiresistant E. coli from cohabitant pets, humans, and household surfaces

Institute for the Biomedical Sciences Abel Salazar, UP VET Small Animal Veterinary Clinic, Porto University, Portugal.
Journal of environmental health (Impact Factor: 0.96). 02/2013; 75(6):74-81.
Source: PubMed


The objective of the study described in this article was to characterize the antimicrobial resistance profiles among E. coli strains isolated from cohabitant pets and humans, evaluating the concurrent colonization of pets, owners, and home surfaces by bacteria carrying the same antimicrobial-resistant genes. The authors also intended to assess whether household surfaces and objects could contribute to the within-household antimicrobial-resistant gene diffusion between human and animal cohabitants. A total of 124 E. coli strains were isolated displaying 24 different phenotypic patterns with a remarkable percentage of multiresistant ones. The same resistance patterns were isolated from the dog's urine, mouth, the laundry floor, the refrigerator door, and the dog's food bowl. Some other multiresistant phenotypes, as long as resistant genes, were found repeatedly in different inhabitants and surfaces of the house. Direct, close contact between all the cohabitants and the touch of contaminated household surfaces and objects could be an explanation for these observations.

  • Source
    • "Although most of these studies have been focusing mainly on Gram-positive microbes (Guardabassi et al., 2004), some recent data are primarily available on phenotypic resistance traits of commensal E. coli as well. An interesting case study on MDR commensal E. coli from cohabitant pets, humans, and their household with the same antimicrobial resistance patterns indicated direct contacts and cross contamination between all cohabitant species including humans (Martins et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: After the era of plentiful antibiotics we are alarmed by the increasing number of antibiotic resistant strains. The genetic flexibility and adaptability of Escherichia coli to constantly changing environments allows to acquire a great number of antimicrobial resistance mechanisms. Commensal strains of E. coli as versatile residents of the lower intestine are also repeatedly challenged by antimicrobial pressures during the lifetime of their host. As a consequence, commensal strains acquire the respective resistance genes, and/or develop resistant mutants in order to survive and maintain microbial homeostasis in the lower intestinal tract. Thus, commensal E. coli strains are regarded as indicators of antimicrobial load on their hosts. This chapter provides a short historic background of the appearance and presumed origin and transfer of antimicrobial resistance genes in commensal intestinal E. coli of animals with comparative information on their pathogenic counterparts. The dynamics, development, and ways of evolution of resistance in the E. coli populations differ according to hosts, resistance mechanisms, and antimicrobial classes used. The most frequent tools of E. coli against a variety of antimicrobials are the efflux pumps and mobile resistance mechanisms carried by plasmids and/or other transferable elements. The emergence of hybrid plasmids (both resistance and virulence) among E. coli is of further concern. Co-existence and co-transfer of these "bad genes" in this huge and most versatile in vivo compartment may represent an increased public health risk in the future. Significance of multidrug resistant (MDR) commensal E. coli seem to be highest in the food animal industry, acting as reservoir for intra- and interspecific exchange and a source for spread of MDR determinants through contaminated food to humans. Thus, public health potential of MDR commensal E. coli of food animals can be a concern and needs monitoring and more molecular analysis in the future.
    Frontiers in Microbiology 09/2013; 4:258. DOI:10.3389/fmicb.2013.00258 · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The Veterinary Laboratory Investigation and Response Network (Vet-LIRN), in collaboration with the Food Emergency Response Network (FERN) and its Microbiology Cooperative Agreement Program (MCAP) laboratories, conducted a study to evaluate the prevalence of selected microbial organisms in various types of pet foods. The goal of this blinded study was to help the Center for Veterinary Medicine prioritize potential future pet food-testing efforts. The study also increased the FERN laboratories' screening capabilities for foodborne pathogens in animal feed matrices, since such pathogens may also be a significant health risk to consumers who come into contact with pet foods. Six U.S. Food and Drug Administration FERN MCAP laboratories analyzed approximately 1056 samples over 2 years. Laboratories tested for Salmonella, Listeria, Escherichia coli O157:H7 enterohemorrhagic E. coli, and Shiga toxin-producing strains of E. coli (STEC). Dry and semimoist dog and cat foods purchased from local stores were tested during Phase 1. Raw dog and cat foods, exotic animal feed, and jerky-type treats purchased through the Internet were tested in Phase 2. Of the 480 dry and semimoist samples, only 2 tested positive: 1 for Salmonella and 1 for Listeria greyii. However, of the 576 samples analyzed during Phase 2, 66 samples were positive for Listeria (32 of those were Listeria monocytogenes) and 15 samples positive for Salmonella. These pathogens were isolated from raw foods and jerky-type treats, not the exotic animal dry feeds. This study showed that raw pet foods may harbor food safety pathogens, such as Listeria monocytogenes and Salmonella. Consumers should handle these products carefully, being mindful of the potential risks to human and animal health.
    Foodborne Pathogens and Disease 05/2014; 11(9). DOI:10.1089/fpd.2014.1748 · 1.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of the study was to examine the characteristics of the resistance profiles of Escherichia coli isolated from healthy pigs from three farms in Western Poland. The sensitivity to 13 antimicrobial agents was tested by a disk diffusion method, and the presence of 13 resistance genes was determined by PCR. The majority of the isolates were multi-resistant. The most common multi-resistance patterns were streptomycin, trimethoprim, sulfisoxazole, ampicillin, tetracycline. Although some resistance genes, such as strA/strB, bla(TEM), sul1, sul2, and tetA, were equally represented in isolates from each farm, differences in the distribution of tetB and tetC, hfrV, dhfrXII, and sun resistance genes were observed among the isolates from different farms. Approximately one-third (35.9%) of the isolates possessed a class 1 integron. The four major different variable regions of the class 1 integron contained streptomycin (aadA1, aadA2, and aadA5) and/or trimethoprim (dhfrI, dhfrV and dhfrXVII), and/or sulphonamides (sul1) resistance genes. The results of this study emphasise that uncontrolled use of antibiotics causes the development of resistance and provides the evidence of frequent occurrence of more than one gene encoding the resistance to the same antimicrobial agent in the multi-resistant strains.
    06/2014; 58(2). DOI:10.2478/bvip-2014-0031
Show more