Looking at the Gregory-Laflamme instability through quasinormal modes

Physical review D: Particles and fields 10/2008; 78(8). DOI: 10.1103/PhysRevD.78.084012
Source: arXiv

ABSTRACT We study evolution of gravitational perturbations of black strings. It is well known that for all wave numbers less than some threshold value, the black string is unstable against the scalar type of gravitational perturbations, which is named the Gregory-Laflamme instability. Using numerical methods, we find the quasinormal modes and time-domain profiles of the black string perturbations in the stable sector and also show the appearance of the Gregory-Laflamme instability in the time domain. The dependence of the black string quasinormal spectrum and late-time tails on such parameters as the wave vector and the number of extra dimensions is discussed. There is numerical evidence that at the threshold point of instability, the static solution of the wave equation is dominant. For wave numbers slightly larger than the threshold value, in the region of stability, we see tiny oscillations with very small damping rate. While, for wave numbers slightly smaller than the threshold value, in the region of the Gregory-Laflamme instability, we observe tiny oscillations with very small growth rate. We also find the level crossing of imaginary part of quasinormal modes between the fundamental mode and the first overtone mode, which accounts for the peculiar time domain profiles.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the stability of $D \geq 7$ asymptotically flat black holes rotating in a single two-plane against tensor-type gravitational perturbations. The extensive search of quasinormal modes for these black holes did not indicate any presence of growing modes, implying the stability of simply rotating Myers-Perry black holes against tensor-type perturbations. Comment: 9 pages, 10 figures, RevTeX
    Physical review D: Particles and fields 04/2009;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, the quasinormal modes (QNMs) of electromagnetic field perturbation to asymptotic safe (AS) black hole are discussed. Through six-order WKB approach we investigate the effects of quantum correction to the quasinormal modes (QNMs) numerically. Meanwhile by means of finite difference method, the evolutions of such perturbation to the safe black hole are figured out with corresponding parameters. It is found that the stability of black hole remains although the decay frequency and damping speed of oscillations are respectively increased and lowered by the quantum correction to classic Schwarzschild black hole.
    International Journal of Theoretical Physics 52(5). · 1.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Perturbations of black holes, initially considered in the context of possible observations of astrophysical effects, have been studied for the past ten years in string theory, brane-world models and quantum gravity. Through the famous gauge/gravity duality, proper oscillations of perturbed black holes, called quasinormal modes (QNMs), allow for the description of the hydrodynamic regime in the dual finite temperature field theory at strong coupling, which can be used to predict the behavior of quark-gluon plasmas in the nonperturbative regime. On the other hand, the brane-world scenarios assume the existence of extra dimensions in nature, so that multidimensional black holes can be formed in a laboratory experiment. All this stimulated active research in the field of perturbations of higher-dimensional black holes and branes during recent years. In this review recent achievements on various aspects of black hole perturbations are discussed such as decoupling of variables in the perturbation equations, quasinormal modes (with special emphasis on various numerical and analytical methods of calculations), late-time tails, gravitational stability, AdS/CFT interpretation of quasinormal modes, and holographic superconductors. We also touch on state-of-the-art observational possibilities for detecting quasinormal modes of black holes.
    Review of Modern Physics 02/2011; 83(3). · 44.98 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014