Temperature dependence of binary and ternary recombination of H_ {3}^{+} ions with electrons

Physical Review A (Impact Factor: 3.04). 05/2009; 79(5). DOI: 10.1103/PhysRevA.79.052707
Source: arXiv

ABSTRACT We study binary and the recently discovered process of ternary He-assisted recombination of H3+ ions with electrons in a low-temperature afterglow plasma. The experiments are carried out over a broad range of pressures and temperatures of an afterglow plasma in a helium buffer gas. Binary and He-assisted ternary recombination are observed and the corresponding recombination rate coefficients are extracted for temperatures from 77 to 330 K. We describe the observed ternary recombination as a two-step mechanism: first, a rotationally excited long-lived neutral molecule H3∗ is formed in electron-H3+ collisions. Second, the H3∗ molecule collides with a helium atom that leads to the formation of a very long-lived Rydberg state with high orbital momentum. We present calculations of the lifetimes of H3∗ and of the ternary recombination rate coefficients for para- and ortho-H3+. The calculations show a large difference between the ternary recombination rate coefficients of ortho- and para-H3+ at temperatures below 300 K. The measured binary and ternary rate coefficients are in reasonable agreement with the calculated values.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a study of H3+ recombination performed at 77 K on the two lowest rotational levels of this ion, which belong to its two different nuclear spin states of the studied ion. A near infrared cavity ring-down spectrometer (~1381 nm, CRDS arrangement) has been used to obtain the time evolution of concentration of both states. From the overall ion density decay during the afterglow we obtained the binary recombination rate coefficient αbin (77 K) = 1.2×10−7 cm3s−1. We have also observed ternary helium assisted recombination of both para and ortho H3+. The process is very slow (at 77 K) and the obtained ternary recombination rate coefficient is in contradiction with the theoretical prediction. It is the first time that the binary and ternary H3+ recombination rate coefficient was measured at a known population of para and ortho H3+ ions in decaying plasma.
    Journal of Physics Conference Series 06/2010; 227(1):012026.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We survey the current situation regarding chemical modelling of the synthesis of molecules in the interstellar medium. The present state of knowledge concerning the rate coefficients and their uncertainties for the major gas-phase processes -- ion-neutral reactions, neutral-neutral reactions, radiative association, and dissociative recombination -- is reviewed. Emphasis is placed on those reactions that have been identified, by sensitivity analyses, as 'crucial' in determining the predicted abundances of the species observed in the interstellar medium. These sensitivity analyses have been carried out for gas-phase models of three representative, molecule-rich, astronomical sources: the cold dense molecular clouds TMC-1 and L134N, and the expanding circumstellar envelope IRC +10216. Our review has led to the proposal of new values and uncertainties for the rate coefficients of many of the key reactions. The impact of these new data on the predicted abundances in TMC-1 and L134N is reported. Interstellar dust particles also influence the observed abundances of molecules in the interstellar medium. Their role is included in gas-grain, as distinct from gas-phase only, models. We review the methods for incorporating both accretion onto, and reactions on, the surfaces of grains in such models, as well as describing some recent experimental efforts to simulate and examine relevant processes in the laboratory. These efforts include experiments on the surface-catalysed recombination of hydrogen atoms, on chemical processing on and in the ices that are known to exist on the surface of interstellar grains, and on desorption processes, which may enable species formed on grains to return to the gas-phase. Comment: Accepted for publication in Space Science Reviews
    Space Science Reviews 11/2010; · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reported are studies of recombination of H3+ ions with electrons in flowing afterglow (FALP) experiment. Reported is observation of dependence of overall recombination process on He pressure and hydrogen partial pressure. The obtained data are in good agreement with previous stationary afterglow (AISA) results and clearly indicate the multicollision and multistep character of the recombination process. Proposed is scheme of overall recombination process.
    Journal of Physics Conference Series 10/2009; 192(1):012005.

Full-text (2 Sources)

Available from
May 22, 2014