Article

Phase diagram and domain splitting in thin ferroelectric films with incommensurate phase

Physical review. B, Condensed matter (Impact Factor: 3.77). 12/2009; 81(19). DOI: 10.1103/PhysRevB.81.195437
Source: arXiv

ABSTRACT We studied the phase diagram of thin ferroelectric films with incommensurate phases and semiconductor properties within the framework of Landau-Ginzburg-Devonshire theory. We performed both analytical calculations and phase-field modeling of the temperature and thickness dependencies of the period of incommensurate 180°-domain structures appeared in thin films covered with perfect electrodes. It is found that the transition temperature from the paraelectric into the incommensurate phase as well as the period of incommensurate domain structure strongly depend on the film thickness, depolarization field contribution, surface and gradient energy. The results may provide insight on the temperature dependence of domain structures in nanosized ferroics with inherent incommensurate phases.

0 Bookmarks
 · 
90 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Physical and structural origins of morphotropic phase boundaries (MPBs) in ferroics remain elusive despite decades of study. The leading competing theories employ either low-symmetry bridging phases or adaptive phases with nanoscale textures to describe different subsets of the macroscopic data, while the decisive atomic-scale information has so far been missing. Here we report direct atomically resolved mapping of polarization and structure order parameter fields in a Sm-doped BiFeO(3) system and their evolution as the system approaches a MPB. We further show that both the experimental phase diagram and the observed phase evolution can be explained by taking into account the flexoelectric interaction, which renders the effective domain wall energy negative, thus stabilizing modulated phases in the vicinity of the MPB. Our study highlights the importance of local order-parameter mapping at the atomic scale and establishes a hitherto unobserved physical origin of spatially modulated phases existing in the vicinity of the MPB.
    Nature Communications 01/2012; 3:775. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of elastic defects on the kinetics of 180-degree uncharged ferroelectric domain wall motion is explored using continuum time-dependent LGD equation with elastic dipole coupling. In one dimensional case, ripples, steps and oscillations of the domain wall velocity appear due to the wall-defect interactions. While the defects do not affect the limiting-wall velocity vs. field dependence, they result in the minimal threshold field required to activate the wall motions. The analytical expressions for the threshold field are derived and the latter is shown to be much smaller than the thermodynamic coercive field. The threshold field is linearly proportional to the concentration of defects and non-monotonically depends on the average distance between them. The obtained results provide the insight into the mesoscopic mechanism of the domain wall pinning by elastic defects in ferroelectrics.
    Journal of Applied Physics 01/2012; 113(18). · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ferroelectric phase transition in the semiconductor Sn2P2S6 single crystal has been studied by means of neutron scattering in the pressure-temperature range adjacent to the anticipated tricritical Lifshitz point (p=0.18GPa, T=296K). The observations reveal a direct ferroelectric-paraelectric phase transition in the whole investigated pressure range (0.18 - 0.6GPa). These results are in a clear disagreement with phase diagrams assumed in numerous earlier works, according to which a hypothetical intermediate incommensurate phase extends over several or even tens of degrees in the 0.5GPa pressure range. Temperature dependence of the anisotropic quasielastic diffuse scattering suggests that polarization fluctuations present above TC are strongly reduced in the ordered phase. Still, the temperature dependence of the (200) Bragg reflection intensity at p=0.18GPa can be remarkably well modeled assuming the order-parameter amplitude growth according to the power law with logarithmic corrections predicted for a uniaxial ferroelectric transition at the tricritical Lifshitz point.
    Physical Review B 12/2012; · 3.66 Impact Factor

Full-text (2 Sources)

Download
24 Downloads
Available from
May 17, 2014