Article

Tailoring Light-Matter Interaction with a Nanoscale Plasmon Resonator

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA and Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Physical Review Letters (Impact Factor: 7.73). 05/2012; 108(22):226803. DOI: 10.1103/PhysRevLett.108.226803

ABSTRACT We propose and demonstrate a new approach for achieving strong light-matter
interactions with quantum emitters. Our approach makes use of a plasmon
resonator composed of defect-free, highly crystalline silver nanowires
surrounded by patterned dielectric distributed Bragg reflectors (DBRs). These
resonators have an effective mode volume (Veff) two orders of magnitude below
the diffraction limit and quality factor (Q) approaching 100, enabling
enhancement of spontaneous emission rates by a factor exceeding 75 at the
cavity resonance. We also show that these resonators can be used to convert a
broadband quantum emitter to a narrowband single-photon source with
color-selective emission enhancement.

0 Followers
 · 
106 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent experiments report observations of quantum interference between plasmon resonances, inviting descriptions of plasmon-photon interaction, using methods from quantum optics. Here we demonstrate, using a Heisenberg-Langevin approach, that the radiation emitted from the localized surface plasmon resonance of a mixed-metal heterodimer may exhibit observable, beat frequency interferences at a far field detector, known as quantum beats. This prediction represents a correspondence between V-type atoms of quantum optics and the familiar heterodimer system of plasmonics. We explore this analogy in depth and find that although both systems support quantum beats, the heterodimer emits photons in bunches due to the bosonic nature of the plasmon. This highlights a significant difference between the properties of atomic and plasmonic systems.
    01/2015; 2(1):150105112855005. DOI:10.1021/ph500387c
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three-dimensional dielectric photonic crystals have well-established enhanced light–matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed with backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry–Perot modes) can be enhanced by coating the crystals with a silver layer, achi
    Proceedings of the National Academy of Sciences 01/2015; 112(4-4):977-981. DOI:10.1073/pnas.1422649112 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the possibility of surface plasmon polariton (SPP) pulse shape, delay and duration manipulation on sub-picosecond timescales via a high intensity pump SPP pulse photoexciting electrons in a gold film. We present a theoretical model describing this process and show that the pump induces the phase modulation of the probe pulse leading to its compression by about 20% and the variation of the delay between two SPP pulses up to 15 fs for the incident fluence of the pump of 1.5 mJ∙cm−2.
    Optics Express 11/2014; 22(23):28019-28026. DOI:10.1364/OE.22.028019 · 3.53 Impact Factor